More on Progressions

Basic Algebra Review Part 6: More on Progressions (Tagalog)

Harmonic Progressions, HP
$h_n = \dfrac{n}{a_1 + (n - 1)d}$
 

Infinite Geometric Progression, IGP
$S = \dfrac{a_1}{1 - r}$
 

Arithmetic Mean
$\displaystyle AM = \dfrac{1}{n} \sum_{i = 1}^n \left( a_i \right)$
 

Harmonic Mean
$HM = \dfrac{n}{\displaystyle{\sum_{i = 1}^n} \left( \dfrac{1}{a_i} \right)}$
 

Geometric Mean
$\displaystyle GM = \left[ \prod_{i = 1}^n \left( a_i \right) \right]^{1/n}$
 

Add new comment

Deafult Input

  • Allowed HTML tags: <img> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <sub> <sup> <blockquote> <ins> <del> <div>
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
  • Mathematics inside the configured delimiters is rendered by MathJax. The default math delimiters are $$...$$ and \[...\] for displayed mathematics, and $...$ and \(...\) for in-line mathematics.

Plain text

  • No HTML tags allowed.
  • Lines and paragraphs break automatically.