equations Submitted by Sydney Sales on Sun, 07/31/2016 - 12:51 ydx = {(e^ (3x) + 1)} dy Log in to post comments $ydx = (e^{3x}+1)dy$ Infinitesimal Tue, 08/30/2016 - 11:45 D.E. $ydx = (e^{3x}+1)dy$ Since the equation has separable variables, \begin{eqnarray*} ydx &=& (e^{3x}+1)dy\\ \dfrac{dx}{e^{3x}+1} - \dfrac{dy}{y} &=& 0\\ \int \dfrac{e^{3x} dx}{e^{6x}+e^{3x}} - \int \dfrac{dy}{y} &=& \int 0\\ \dfrac{1}{3} (3x - \ln(e^{3x}+1)) - \ln y &=& C\\ 3x - \ln(e^{3x}+1) - 3\ln y &=& C\\ \end{eqnarray*} Rearranging, the answer is $\boxed{e^{3x}=Cy^3(e^{3x}+1)}$ Log in to post comments
$ydx = (e^{3x}+1)dy$ Infinitesimal Tue, 08/30/2016 - 11:45 D.E. $ydx = (e^{3x}+1)dy$ Since the equation has separable variables, \begin{eqnarray*} ydx &=& (e^{3x}+1)dy\\ \dfrac{dx}{e^{3x}+1} - \dfrac{dy}{y} &=& 0\\ \int \dfrac{e^{3x} dx}{e^{6x}+e^{3x}} - \int \dfrac{dy}{y} &=& \int 0\\ \dfrac{1}{3} (3x - \ln(e^{3x}+1)) - \ln y &=& C\\ 3x - \ln(e^{3x}+1) - 3\ln y &=& C\\ \end{eqnarray*} Rearranging, the answer is $\boxed{e^{3x}=Cy^3(e^{3x}+1)}$ Log in to post comments
$ydx = (e^{3x}+1)dy$
D.E.
$ydx = (e^{3x}+1)dy$
Since the equation has separable variables,
\begin{eqnarray*}
ydx &=& (e^{3x}+1)dy\\
\dfrac{dx}{e^{3x}+1} - \dfrac{dy}{y} &=& 0\\
\int \dfrac{e^{3x} dx}{e^{6x}+e^{3x}} - \int \dfrac{dy}{y} &=& \int 0\\
\dfrac{1}{3} (3x - \ln(e^{3x}+1)) - \ln y &=& C\\
3x - \ln(e^{3x}+1) - 3\ln y &=& C\\
\end{eqnarray*}
Rearranging, the answer is $\boxed{e^{3x}=Cy^3(e^{3x}+1)}$