Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…1 week 2 days ago
- Determine the least depth…10 months 1 week ago
- Solve mo ang h manually…1 week 2 days ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 4 weeks ago
- Refer to the figure below…10 months 3 weeks ago
- where do you get the sqrt411 week 2 days ago
- Thank you so much1 week 2 days ago
- How did you get the 2.8 mins…1 week 2 days ago
- How did you get the distance…1 week 2 days ago


$ye^{xy}\,dx + xe^{xy}\,dy =
$ye^{xy}\,dx + xe^{xy}\,dy = 0$
$e^{xy}(y\,dx + x\,dy) = 0$
$e^{xy} \, d(xy) = 0$
$\displaystyle \int e^{xy} \, d(xy) = 0$
$e^{xy} = c$ answer
Than you sir Romel. God bless
In reply to $ye^{xy}\,dx + xe^{xy}\,dy = by Jhun Vert
So it was not an exact equation haha. By the way thank you sir Romel. God bless.
Boss pahelp naman po...
Boss pahelp naman po....pleassssssss sir.....
1. (2ycosx + sin⁴x)dx = sin x dy when x=½π, y=1
2. (1+4xy-4x²y) dx +(x²-x³)dy =0 when x=2, y=¼