Differential EQNS: ydx=[x+(y2x2)1/2]dy

ydx = x + √ y^2 - x^2 dy

The x don't have differential element, do you mean this?
ydx=x+(y2x2)1/2dy

Or this?
ydx=[x+(y2x2)1/2]dy

Solution
ydx=[x+(y2x2)1/2]dy

Let x = vy
dx = v dy + y dv

y(vdy+ydv)=[vy+(y2v2y2)1/2]dy

vydy+y2dv=[vy+y(1v2)1/2]dy

y2dv=y(1v2)1/2dy

ydv=(1v2)1/2dy

dv(1v2)1/2=dyy

dv1v2=dyy

arcsinv=lny+c

arcsin(xy)=lny+c