Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 months ago
- Sir what if we want to find…2 months ago
- Hello po! Question lang po…2 months 2 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months 3 weeks ago - Use integration by parts for…4 months 2 weeks ago
- need answer4 months 2 weeks ago
- Yes you are absolutely right…4 months 3 weeks ago
- I think what is ask is the…4 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…4 months 3 weeks ago
- Why did you use (1/SQ root 5…4 months 3 weeks ago
Re: Centroid of 3 Lines or triangle
Using Vertical Strip
$V = \Sigma \left[ 2\pi {\displaystyle \int_{x_1}^{x_2}} xy \, d_x \right]$
$V = 2\pi {\displaystyle \int_0^2} x (3x - x) \, d_x + 2\pi {\displaystyle \int_2^4} x [ \, (8 - x) - x \, ] \, d_x$
$V = 32\pi ~ \text{unit}^3$
By symmetry
$X_G = 0$
Solving for YG
$V \, Y_G = \Sigma \left[ 2\pi {\displaystyle \int_{x_1}^{x_2}} y_c xy \, d_x \right]$
$V \, Y_G = \Sigma \left[ 2\pi {\displaystyle \int_{x_1}^{x_2}} \frac{1}{2}(y_U + y_L) x (y_U - y_L) \, d_x \right]$
$V \, Y_G = \Sigma \left[ \pi {\displaystyle \int_{x_1}^{x_2}} x({y_U}^2 - {y_L}^2) \, d_x \right]$
$32\pi \, Y_G = \pi {\displaystyle \int_0^2} x(9x^2 - x^2) \, d_x + \pi {\displaystyle \int_2^4} x [ \, (8 - x)^2 - x^2 \, ] \, d_x$
$32\pi \, Y_G = \frac{352}{3}\pi$
$Y_G = \frac{11}{3}$
Centroid of the solid is at (0, 11/3)
Re: Centroid of volume formed by rotating about the y-axis...
Using Horizontal Strip
$V = \Sigma \left[ \pi {\displaystyle \int_{x_1}^{x_2}} ({x_R}^2 - {x_L}^2) \, dy \right]$
$V = \pi {\displaystyle \int_0^4} (y^2 - \frac{1}{9}y^2) \, dy + \pi {\displaystyle \int_4^6} [ \, (8 - y)^2 - \frac{1}{9}y^2) \, ] \, dy$
$V = 32\pi ~ \text{unit}^3$
$V \, Y_G = \Sigma \left[ \pi {\displaystyle \int_{x_1}^{x_2}} y_c ({x_R}^2 - {x_L}^2) \, dy \right]$
$32\pi \, Y_G = \pi {\displaystyle \int_0^4} y(y^2 - \frac{1}{9}y^2) \, dy + \pi {\displaystyle \int_4^6} y[ \, (8 - y)^2 - \frac{1}{9}y^2) \, ] \, dy$
$32\pi \, Y_G = \frac{352}{3}\pi$
$Y_G = \frac{11}{3}$
Centroid of the solid is at (0, 11/3)