Logarithm and Other Important Properties in Algebra
Properties of Logarithm
- If $y = a^x$, then $\log_a y = x$. ← Definition of logarithm
- $\log_a xy = \log_a x + \log_a y$
- $\log_a \dfrac{x}{y} = \log_a x - \log_a y$
- $\log_a x^n = n \log_a x$
- $\log_a a = 1$
- $\log_a 1 = 0$
- $\log_{10} x = \log x$ ← Common logarithm
- $\log_e x = \ln x$ ← Naperian or natural logarithm
- $\log_y x = \dfrac{\log x}{\log y} = \dfrac{\ln x}{\ln y}$ ← Change base rule
- If $\log_a x = \log_a y$, then $x = y$.
- If $\log_a x = y$, then $x = {\rm antilog}_a \, y$.
- Read more about Logarithm and Other Important Properties in Algebra
- Log in or register to post comments
Recent comments
(…