Moment of inertia
$I = \dfrac{200(250^3)}{12} - \dfrac{150(200^3)}{12} = 160\,416\,666.7 ~ \text{mm}^4$
Maximum Shear
$V_{max} = \frac{2}{3}P$
Value of P based on the strength of nails
$R = 2(1300) = 2600 ~ \text{N}$
$Q = 150(25)(112.5) = 421\,875 ~ \text{mm}^3$
$s = \dfrac{RI}{VQ}$
$125 = \dfrac{2600(160\,416\,666.7)}{\frac{2}{3}P(421\,875)}$
$P = 11.86 ~ \text{kN}$
Value of P based on shear strength of wood
$Q = 200(125)(62.5) - 150(100)(50) = 812\,500 ~ \text{mm}^3$
$F_v = \dfrac{VQ}{Ib}$
$0.827 = \dfrac{\frac{2}{3}P(812\,500)}{160\,416\,666.7(50)}$
$P = 12.25 ~ \text{kN}$
For safe value of P, use P = 11.86 kN answer for part (1)
Maximum Flexural Stress
Maximum Moment
$M_{max} = 1.2(\frac{2}{3}P) = 0.8(11.86)$
$M_{max} = 9.488 ~ \text{kN}\cdot\text{m}$
$f_b = \dfrac{Mc}{I}$
$f_b = \dfrac{9.488(125)(1000^2)}{160\,416\,666.7}$
$f_b = 7.39 ~ \text{MPa}$ answer for part (2)