From Illustrative Problem 591
τ = 100 MPa shear stress
σb = 220 MPa bearing stress for single shear rivet
σb = 280 MPa bearing stress for double shear rivet
By transfer formula for moment of inertia
$I = \bar{I} + Ad^2$
$I_{NA} = 2 \, [ \, (3.84 \times 10^6) + 7570(19.7^2) \, ]$
$I_{NA} = 13\,555\,682.6 \, \text{ mm}^4$
Rivet capacity in shear (single shear)
$R_s = 2(A_s \, \tau) = 2 \, [ \, \frac{1}{4}\pi (19^2)(100) \, ]$
$R_s = 18\,050\pi \, \text{ N} = 56.705 \, \text{ kN}$
Rivet capacity in bearing (use σb = 220 MPa)
$R_b = 2(A_b \, \sigma_b) = 2 \, [ \, 19(13.2)(220) \, ]$
$R_b = 110\,352 \, \text{ N} = 110.352 \, \text{ kN}$
Use R = 56.705 kN for safe value of R
From strength of rivets
$R = \dfrac{VQ_{NA}}{I}s$
$56.705 = \dfrac{V \, [ \, 7570(19.7) \, ]}{13\,555\,682.6}(200)$
$V = 25.77 \, \text{ kN}$ answer