f
b = stress at c
Let
f
1 = stress at y
1
f
2 = stress at y
2
$f_b = \dfrac{Mc}{I}$
$M = \dfrac{f_b \, I}{c}$
At y1:
$f_1 = \dfrac{My_1}{I} = \dfrac{\dfrac{f_b \, I}{c}y_1}{I}$
$f_1 = \dfrac{f_b \, y_1}{c}$
At y2:
$f_2 = \dfrac{My_2}{I} = \dfrac{\dfrac{f_b \, I}{c}y_2}{I}$
$f_2 = \dfrac{f_b \, y_2}{c}$
At (barred y'):
$f\,' = \dfrac{f_1 + f_2}{2} = \dfrac{\dfrac{f_b \, y_1}{c} + \dfrac{f_b \, y_2}{c}}{2}$
$f\,' = \dfrac{f_b}{c} \left( \dfrac{y_1 + y_2}{2} \right)$
$f\,' = \dfrac{f_b}{c}\,\bar{y}\,'$
$F = f\,' \, A' = \dfrac{f_b}{c}\,\bar{y}\,' \, A'$
$F = (f_b \, / \, c) \, A' \, \bar{y}\,'$ (okay!)
$M = F \bar{y}\,'$
$M = [ \, (f_b \, / \, c) \, A' \, \bar{y}\,' \, ] \, \bar{y}\,'$
$M = (f_b \, / \, c) \, A' \, \bar{y}\,'^2$
but $\,\, A' \, \bar{y}\,'^2 = I'$
thus,
$M = ( \, f_b \, / \, c \, ) \, I'$
$M = f_b \, I' \, / \, c$ (okay!)