$P = 3500 ~ \text{N}$
$W = 3[ \, 100(4) \, ] = 1200 ~ \text{N}$
From triangle BEC in the figure below
$x^2 = 2^2 + 4^2 - 2(2)(4) \cos 120^\circ$
$x^2 = 28$
$x = 2\sqrt{7} ~ \text{m}$
$\dfrac{x}{\sin 120^\circ} = \dfrac{2}{\sin \alpha}$
$\sin \alpha = \dfrac{2\sin 120^\circ}{x}$
$\sin \alpha = \dfrac{2\sin 120^\circ}{2\sqrt{7}}$
$\sin \alpha = \frac{1}{14}\sqrt{21}$
$\dfrac{x}{\sin 120^\circ} = \dfrac{4}{\sin \beta}$
$\sin \beta = \dfrac{4\sin 120^\circ}{x}$
$\sin \beta = \dfrac{4\sin 120^\circ}{2\sqrt{7}}$
$\sin \beta = \frac{1}{7}\sqrt{21}$
$a = x \sin 60^\circ = 2\sqrt{7} \sin 60^\circ = \sqrt{21} ~ \text{m}$
$b = 4 \sin \beta = 4(\frac{1}{7}\sqrt{21}) = \frac{4}{7}\sqrt{21} ~ \text{m}$
$c = \frac{1}{3}a = \frac{1}{3}\sqrt{21} ~ \text{m}$
$d = 2 \sin \alpha = 2(\frac{1}{14}\sqrt{21}) = \frac{1}{7}\sqrt{21}$
$e = 4 \sin \alpha = 4(\frac{1}{14}\sqrt{21}) = \frac{2}{7}\sqrt{21}$
$\Sigma M_{BC} = 0$
$aR_A = bP + cW$
$\sqrt{21}R_A = \frac{4}{7}\sqrt{21}(3500) + \frac{1}{3}\sqrt{21}(1200)$
$R_A = \frac{4}{7}(3500) + (1200)$
$R_A = 2400 ~ \text{N}$
$\Sigma M_{AC} = 0$
$aR_B = dP + cW$
$\sqrt{21}R_B = \frac{1}{7}\sqrt{21}(3500) + \frac{1}{3}\sqrt{21}(1200)$
$R_B = \frac{1}{7}(3500) + \frac{1}{3}(1200)$
$R_B = 900 ~ \text{N}$
$\Sigma M_{AB} = 0$
$aR_C = eP + cW$
$\sqrt{21}R_C = \frac{2}{7}\sqrt{21}(3500) + \frac{1}{3}\sqrt{21}(1200)$
$R_C = \frac{2}{7}(3500) + \frac{1}{3}(1200)$
$R_C = 1400 ~ \text{N}$
Summary
$R_A = 2400 ~ \text{N}$ Answer: [ D ]
$R_B = 900 ~ \text{N}$ Answer: [ A ]
$R_C = 1400 ~ \text{N}$ Answer: [ C ]