$y(y^2 + 1) \, dx + x(y^2 - 1) \, dy = 0$
Divide by xy(y2 + 1)
$\dfrac{y(y^2 + 1) \, dx}{xy(y^2 + 1)} + \dfrac{x(y^2 - 1) \, dy}{xy(y^2 + 1)} = 0$
$\dfrac{dx}{x} + \dfrac{(y^2 - 1) \, dy}{y(y^2 + 1)} = 0$
Resolve into partial fraction
$\dfrac{y^2 - 1}{y(y^2 + 1)} = \dfrac{A}{y} + \dfrac{By + C}{y^2 + 1}$
$y^2 - 1 = A(y^2 + 1) + (By + C)y$
Set y = 0, A = -1
Equate coefficients of y2
1 = A + B
1 = -1 + B
B = 2
Equate coefficients of y
0 = 0 + C
C = 0
Hence,
$\dfrac{y^2 - 1}{y(y^2 + 1)} = \dfrac{-1}{y} + \dfrac{2y}{y^2 + 1}$
$\dfrac{y^2 - 1}{y(y^2 + 1)} = \dfrac{2y}{y^2 + 1} - \dfrac{1}{y}$
Thus,
$\dfrac{dx}{x} + \left( \dfrac{2y}{y^2 + 1} - \dfrac{1}{y} \right) \, dy = 0$
$\displaystyle \int \dfrac{dx}{x} + \int \dfrac{2y \, dy}{y^2 + 1} - \int \dfrac{dy}{y} = 0$
$\ln x + \ln (y^2 + 1) - \ln y = \ln c$
$\ln \dfrac{x(y^2 + 1)}{y} = \ln c$
$\dfrac{x(y^2 + 1)}{y} = c$
$x(y^2 + 1) = cy$ answer - okay