Problem 05 | Substitution Suggested by the Equation Problem 05 $dy/dx = \sin (x + y)$ Solution 05 $dy/dx = \sin (x + y)$ $dy = \sin (x + y)~dx$ Let $z = x + y$ $dz = dx + dy$ $dy = dz - dx$ $dz - dx = \sin z~dx$ $dz = \sin z~dx + dx$ $dz = (\sin z + 1)~dx$ $\dfrac{dz}{\sin z + 1} = dx$ $\dfrac{dz}{1 + \sin z} \cdot \dfrac{1 - \sin z}{1 - \sin z} = dx$ $\dfrac{(1 - \sin z)~dz}{1 - \sin^2 z} = dx$ $\dfrac{(1 - \sin z)~dz}{\cos^2 z} = dx$ $\dfrac{~dz}{\cos^2 z} - \dfrac{\sin z~dz}{\cos^2 z} = dx$ Read more about Problem 05 | Substitution Suggested by the EquationLog in or register to post comments
Problem 03 | Substitution Suggested by the Equation Problem 03 $dy/dx = (9x + 4y + 1)^2$ Solution 03 $dy/dx = (9x + 4y + 1)^2$ $dy = (9x + 4y + 1)^2~dx$ Let $z = 9x + 4y + 1$ $dz = 9~dx + 4~dy$ $dy = \frac{1}{4}(dz - 9~dx)$ $\frac{1}{4}(dz - 9~dx) = z^2~dx$ $dz - 9~dx = 4z^2~dx$ $dz = 4z^2~dx + 9~dx$ $dz = (4z^2 + 9)~dx$ $\dfrac{dz}{4z^2 + 9} = dx$ $\dfrac{dz}{(2z)^2 + 3^2} = dx$ $\displaystyle \dfrac{1}{2} \int \dfrac{2dz}{(2z)^2 + 3^2} = \int dx$ Read more about Problem 03 | Substitution Suggested by the EquationLog in or register to post comments
Problem 02 | Substitution Suggested by the Equation Problem 02 $\sin y(x + \sin y)~dx + 2x^2 \cos y~dy = 0$ Solution 02 $\sin y(x + \sin y)~dx + 2x^2 \cos y~dy = 0$ Let $z = \sin y$ $dz = \cos y~dy$ Hence, $z(x + z)~dx + 2x^2~dz = 0$ → homogeneous equation Let $z = vx$ $dz = v~dx + x~dv$ $vx(x + vx)~dx + 2x^2(v~dx + x~dv) = 0$ $x^2(v + v^2)~dx + 2vx^2~dx + 2x^3~dv = 0$ Read more about Problem 02 | Substitution Suggested by the EquationLog in or register to post comments
Problem 01 | Substitution Suggested by the Equation Problem 01 $(3x - 2y + 1)~dx + (3x - 2y + 3)~dy = 0$ Solution 01 $(3x - 2y + 1)~dx + (3x - 2y + 3)~dy = 0$ Let $z = 3x - 2y$ $dz = 3~dx - 2~dy$ $dy = \frac{1}{2}(3~dx - dz)$ Thus, $(z + 1)~dx + (z + 3)[ \, \frac{1}{2}(3~dx - dz) \, ] = 0$ $(z + 1)~dx + \frac{3}{2}(z + 3)~dx - \frac{1}{2}(z + 3)~dz = 0$ $[ \, (z + 1) + (\frac{3}{2}z + \frac{9}{2}) \, ]~dx - \frac{1}{2}(z + 3)~dz = 0$ $(\frac{5}{2}z + \frac{11}{2})~dx - \frac{1}{2}(z + 3)~dz = 0$ Read more about Problem 01 | Substitution Suggested by the EquationLog in or register to post comments
Problem 06 - 07 | Integrating Factors Found by Inspection Problem 06 $y(y^2 + 1) \, dx + x(y^2 - 1) \, dy = 0$ Solution 06 $y(y^2 + 1) \, dx + x(y^2 - 1) \, dy = 0$ $y^3 \, dx + y \, dx + xy^2 \, dy - x \, dy = 0$ $(xy^2 \, dy + y^3 \, dx) + (y \, dx - x \, dy) = 0$ $y^2(x \, dy + y \, dx) + (y \, dx - x \, dy) = 0$ $(x \, dy + y \, dx) + \left( \dfrac{y \, dx - x \, dy}{y^2} \right) = 0$ $d(xy) + d\left( \dfrac{x}{y} \right) = 0$ $\displaystyle \int d(xy) + \int d\left( \dfrac{x}{y} \right) = 0$ $xy + \dfrac{x}{y} = c$ $xy^2 + x = cy$ Read more about Problem 06 - 07 | Integrating Factors Found by InspectionLog in or register to post comments
Problem 23 | Separation of Variables Problem 23 $x \cos^2 y \, dx + \tan y \, dy = 0$ Read more about Problem 23 | Separation of VariablesLog in or register to post comments
Problem 22 | Separation of Variables Problem 22 $(xy + x) \, dx = (x^2y^2 + x^2 + y^2 + 1) \, dy = 0$ Solution 22 $(xy + x) \, dx = (x^2y^2 + x^2 + y^2 + 1) \, dy = 0$ $x(y + 1) \, dx = (x^2 + 1)(y^2 + 1) \, dy = 0$ $\dfrac{x(y + 1) \, dx}{(x^2 + 1)(y + 1)} = \dfrac{(x^2 + 1)(y^2 + 1) \, dy}{(x^2 + 1)(y + 1)} = 0$ $\dfrac{x \, dx}{x^2 + 1} = \dfrac{(y^2 + 1) \, dy}{y + 1} = 0$ By long division $\dfrac{y^2 + 1}{y + 1} = y - 1 + \dfrac{2}{y + 1}$ Thus, $\dfrac{x \, dx}{x^2 + 1} = \left( y - 1 + \dfrac{2}{y + 1} \right) \, dy = 0$ Read more about Problem 22 | Separation of VariablesLog in or register to post comments
Problem 21 | Separation of Variables Problem 21 $x^2 \, dx + y(x - 1) \, dy = 0$ Solution 21 $x^2 \, dx + y(x - 1) \, dy = 0$ $\dfrac{x^2 \, dx}{x - 1} + y \, dy = 0$ By long division $\dfrac{x^2 \, dx}{x - 1} = x + 1 + \dfrac{1}{x - 1}$ Thus, $\left[ (x + 1) + \dfrac{1}{x - 1} \right] \, dx + y \, dy = 0$ $\displaystyle \int (x + 1) \, dx + \int \dfrac{dx}{x - 1} + \int y \, dy = 0$ $\frac{1}{2}(x + 1)^2 + \ln |x - 1| + \frac{1}{2}y^2 + \ln c = 0$ $(x + 1)^2 + 2\ln |x - 1| + y^2 + 2\ln c = 0$ Read more about Problem 21 | Separation of VariablesLog in or register to post comments
Problem 20 | Separation of Variables Problem 20 $xy \, dx - (x + 2) \, dy = 0$ Solution 20 $xy \, dx - (x + 2) \, dy = 0$ $\dfrac{xy \, dx}{y(x + 2)} - \dfrac{(x + 2) \, dy}{y(x + 2)} = 0$ $\dfrac{x \, dx}{x + 2} - \dfrac{dy}{y} = 0$ $\left( 1 - \dfrac{2}{x + 2} \right) \, dx - \dfrac{dy}{y} = 0$ $\displaystyle \int dx - 2 \int \dfrac{dx}{x + 2} - \int \dfrac{dy}{y} = 0$ $x - 2 \ln (x + 2) - \ln y = \ln c$ $x = \ln c + \ln y + 2 \ln (x + 2)$ $x = \ln c + \ln y + \ln (x + 2)^2$ $x = \ln cy(x + 2)^2$ $\ln e^x = \ln cy(x + 2)^2$ Read more about Problem 20 | Separation of VariablesLog in or register to post comments
Problem 19 | Separation of Variables Problem 19 $dr = b(\cos \theta \, dr + r \sin \theta \, d\theta)$ Solution 19 $dr = b(\cos \theta \, dr + r \sin \theta \, d\theta)$ $dr = b\cos \theta \, dr + br \sin \theta \, d\theta$ $dr - b\cos \theta \, dr = br \sin \theta \, d\theta$ $(1 - b\cos \theta) \, dr = br \sin \theta \, d\theta$ $\dfrac{(1 - b\cos \theta) \, dr}{r(1 - b\cos \theta)} = \dfrac{br \sin \theta \, d\theta}{r(1 - b\cos \theta)}$ $\dfrac{dr}{r} = \dfrac{b \sin \theta \, d\theta}{1 - b\cos \theta}$ Read more about Problem 19 | Separation of VariablesLog in or register to post comments