Problem 18 | Separation of Variables

Problem 18
ye2xdx=(4+e2x)dy
 

Solution 18
ye2xdx=(4+e2x)dy

ye2xdxy(4+e2x)=(4+e2x)dyy(4+e2x)

e2xdx4+e2x=dyy

12e2x(2dx)4+e2x=dyy

12ln(4+e2x)=lny+lnc

12ln(4+e2x)=lncy

ln(4+e2x)=2lncy

ln(4+e2x)=ln(cy)2

ln(4+e2x)=lnc2y2

Problem 14 - 15 | Separation of Variables

Problem 14
2ydx=3xdy

Solution 14

 

Problem 15
mydx=nxdy

Solution 15
mydx=nxdy

mdxx=ndyy

mlnx=nlny+lnc

lnxm=lnyn+lnc

lnxm=lncyn

Problem 12 | Separation of Variables

Problem 12
sinxsinydx+cosxcosydy=0
 

Solution 12
sinxsinydx+cosxcosydy=0

sinxsinydxsinycosx+cosxcosydysinycosx=0

sinxdxcosx+cosydysiny=0

sinxdxcosx+cosydysiny=0

ln(cosx)+ln(siny)=lnc

lnsinycosx=lnc

sinycosx=c

Problem 08 | Separation of Variables

Problem 08
xy2dx+exdy=0,   when   x,   y12.
 

Solution 08
xy2dx+exdy=0

xy2dxy2ex+exdyy2ex=0

xdxex+dyy2=0

xexdx+y2dy=0
 

For   xexdx
Let
u=x,   du=dx

dv=exdx,   v=ex