siny(x+siny) dx+2x2cosy dy=0
Let
z=siny
dz=cosy dy
Hence,
z(x+z) dx+2x2 dz=0 → homogeneous equation
Let
z=vx
dz=v dx+x dv
vx(x+vx) dx+2x2(v dx+x dv)=0
x2(v+v2) dx+2vx2 dx+2x3 dv=0
[x2(v+v2) dx+2vx2 dx]+2x3 dv=0
x2[(v+v2)+2v] dx+2x3 dv=0
x2(3v+v2) dx+2x3 dv=0
vx2(3+v) dx+2x3 dv=0
Divide by vx3(3 + v)
dxx+2 dvv(3+v)=0
dxx+2 dvv(3+v)=0
Consider
2v(3+v)=Av+B3+v
2=A(3+v)+Bv
Set v = 0, A = 2/3
Set v = -3, B = -2/3
2v(3+v)=2/3v−2/33+v
Thus,
dxx+(2/3v−2/33+v) dv=0
∫dxx+23∫dvv−23∫dv3+v=0
lnx+23lnv−23ln(3+v)=13lnc
3lnx+2lnv−2ln(3+v)=lnc
lnx3+lnv2−ln(3+v)2=lnc
lnx3v2(3+v)2=lnc
x3v2(3+v)2=c
x3(v3+v)2=c
From
z=vx
v=zx
x3(zx3+zx)2=c
x3(zx3x+zx)2=c
x3(z3x+z)2=c
But z=siny
x3(siny3x+siny)2=c
x3⋅sin2y(3x+siny)2=c
x3sin2y=c(3x+siny)2 answer