homogeneous function

Problem 02 | Substitution Suggested by the Equation

Problem 02
$\sin y(x + \sin y)~dx + 2x^2 \cos y~dy = 0$
 

Solution 02
$\sin y(x + \sin y)~dx + 2x^2 \cos y~dy = 0$
 

Let
$z = \sin y$

$dz = \cos y~dy$
 

Hence,
$z(x + z)~dx + 2x^2~dz = 0$       → homogeneous equation
 

Let
$z = vx$

$dz = v~dx + x~dv$
 

$vx(x + vx)~dx + 2x^2(v~dx + x~dv) = 0$

$x^2(v + v^2)~dx + 2vx^2~dx + 2x^3~dv = 0$

Problem 04 | Equations with Homogeneous Coefficients

Problem 04
$xy \, dx - (x^2 + 3y^2) \, dy = 0$
 

Solution 04
$xy \, dx - (x^2 + 3y^2) \, dy = 0$
 

Let
$x = vy$

$dx = v \, dy + y \, dv$
 

$vy^2(v \, dy + y \, dv) - (v^2y^2 + 3y^2) \, dy = 0$

$vy^2(v \, dy + y \, dv) - y^2(v^2 + 3) \, dy = 0$

$v(v \, dy + y \, dv) - (v^2 + 3) \, dy = 0$

$v^2 \, dy + vy \, dv - v^2 \, dy - 3 \, dy = 0$

$vy \, dv - 3 \, dy = 0$

$v \, dv - \dfrac{3 \, dy}{y} = 0$

$\displaystyle \int v \, dv - 3 \int \dfrac{dy}{y} = 0$

Problem 03 | Equations with Homogeneous Coefficients

Problem 03
$2(2x^2 + y^2) \, dx - xy \, dy = 0$
 

Solution 03
$2(2x^2 + y^2) \, dx - xy \, dy = 0$
 

Let
$y = vx$

$dy = v \, dx + x \, dv$
 

$2(2x^2 + v^2x^2) \, dx - vx^2(v \, dx + x \, dv) = 0$

$4x^2 \, dx + 2v^2x^2 \, dx - v^2x^2 \, dx - vx^3 \, dv = 0$

$4x^2 \, dx + v^2x^2 \, dx - vx^3 \, dv = 0$

$x^2(4 + v^2) \, dx - vx^3 \, dv = 0$

$\dfrac{x^2(4 + v^2) \, dx}{x^3(4 + v^2)} - \dfrac{vx^3 \, dv}{x^3(4 + v^2)} = 0$

$\dfrac{dx}{x} - \dfrac{v \, dv}{4 + v^2} = 0$

Problem 02 | Equations with Homogeneous Coefficients

Problem 02
$(x - 2y) \, dx + (2x + y) \, dy = 0$
 

Solution 02
$(x - 2y) \, dx + (2x + y) \, dy = 0$
 

Let
$y = vx$

$dy = v \, dx + x \, dv$
 

Substitute,
$(x - 2vx) \, dx + (2x + vx)(v \, dx + x \, dv) = 0$

$x \, dx - 2vx \, dx + 2vx \, dx + 2x^2 \, dv + v^2x \, dx + vx^2 \, dv = 0$

$x \, dx + 2x^2 \, dv + v^2x \, dx + vx^2 \, dv = 0$

$(x \, dx + v^2x \, dx) + (2x^2 \, dv + vx^2 \, dv) = 0$

$x(1 + v^2) \, dx + x^2(2 + v) \, dv = 0$

Problem 01 | Equations with Homogeneous Coefficients

Problem 01
$3(3x^2 + y^2) \, dx - 2xy \, dy = 0$
 

Solution 01
$3(3x^2 + y^2) \, dx - 2xy \, dy = 0$
 

Let
$y = vx$

$dy = v \, dx + x \, dv$
 

Substitute,
$3(3x^2 + v^2x^2) \, dx - 2vx^2 (v \, dx + x \, dv) = 0$

$3(3 + v^2)x^2 \, dx - 2vx^2 (v \, dx + x \, dv) = 0$
 

Divide by x2,
$3(3 + v^2) \, dx - 2v (v \, dx + x \, dv) = 0$

$9 \, dx + 3v^2 \, dx - 2v^2 \, dx - 2vx \, dv = 0$

$9 \, dx + v^2 \, dx - 2vx \, dv = 0$

$(9 + v^2) \, dx - 2vx \, dv = 0$

Subscribe to RSS - homogeneous function