Problem 05 | Substitution Suggested by the Equation Problem 05 dy/dx=sin(x+y) Solution 05 dy/dx=sin(x+y) dy=sin(x+y) dx Let z=x+y dz=dx+dy dy=dz−dx dz−dx=sinz dx dz=sinz dx+dx dz=(sinz+1) dx dzsinz+1=dx dz1+sinz⋅1−sinz1−sinz=dx (1−sinz) dz1−sin2z=dx (1−sinz) dzcos2z=dx dzcos2z−sinz dzcos2z=dx Read more about Problem 05 | Substitution Suggested by the EquationLog in or register to post comments
Problem 03 | Substitution Suggested by the Equation Problem 03 dy/dx=(9x+4y+1)2 Solution 03 dy/dx=(9x+4y+1)2 dy=(9x+4y+1)2 dx Let z=9x+4y+1 dz=9 dx+4 dy dy=14(dz−9 dx) 14(dz−9 dx)=z2 dx dz−9 dx=4z2 dx dz=4z2 dx+9 dx dz=(4z2+9) dx dz4z2+9=dx dz(2z)2+32=dx 12∫2dz(2z)2+32=∫dx Read more about Problem 03 | Substitution Suggested by the EquationLog in or register to post comments
Problem 02 | Substitution Suggested by the Equation Problem 02 siny(x+siny) dx+2x2cosy dy=0 Solution 02 siny(x+siny) dx+2x2cosy dy=0 Let z=siny dz=cosy dy Hence, z(x+z) dx+2x2 dz=0 → homogeneous equation Let z=vx dz=v dx+x dv vx(x+vx) dx+2x2(v dx+x dv)=0 x2(v+v2) dx+2vx2 dx+2x3 dv=0 Read more about Problem 02 | Substitution Suggested by the EquationLog in or register to post comments
Problem 01 | Substitution Suggested by the Equation Problem 01 (3x−2y+1) dx+(3x−2y+3) dy=0 Solution 01 (3x−2y+1) dx+(3x−2y+3) dy=0 Let z=3x−2y dz=3 dx−2 dy dy=12(3 dx−dz) Thus, (z+1) dx+(z+3)[12(3 dx−dz)]=0 (z+1) dx+32(z+3) dx−12(z+3) dz=0 [(z+1)+(32z+92)] dx−12(z+3) dz=0 (52z+112) dx−12(z+3) dz=0 Read more about Problem 01 | Substitution Suggested by the EquationLog in or register to post comments
Problem 06 - 07 | Integrating Factors Found by Inspection Problem 06 y(y2+1)dx+x(y2−1)dy=0 Solution 06 y(y2+1)dx+x(y2−1)dy=0 y3dx+ydx+xy2dy−xdy=0 (xy2dy+y3dx)+(ydx−xdy)=0 y2(xdy+ydx)+(ydx−xdy)=0 (xdy+ydx)+(ydx−xdyy2)=0 d(xy)+d(xy)=0 ∫d(xy)+∫d(xy)=0 xy+xy=c xy2+x=cy Read more about Problem 06 - 07 | Integrating Factors Found by InspectionLog in or register to post comments
Problem 04 | Equations with Homogeneous Coefficients Problem 04 xydx−(x2+3y2)dy=0 Solution 04 xydx−(x2+3y2)dy=0 Let x=vy dx=vdy+ydv vy2(vdy+ydv)−(v2y2+3y2)dy=0 vy2(vdy+ydv)−y2(v2+3)dy=0 v(vdy+ydv)−(v2+3)dy=0 v2dy+vydv−v2dy−3dy=0 vydv−3dy=0 vdv−3dyy=0 ∫vdv−3∫dyy=0 Read more about Problem 04 | Equations with Homogeneous CoefficientsLog in or register to post comments
Problem 03 | Equations with Homogeneous Coefficients Problem 03 2(2x2+y2)dx−xydy=0 Solution 03 2(2x2+y2)dx−xydy=0 Let y=vx dy=vdx+xdv 2(2x2+v2x2)dx−vx2(vdx+xdv)=0 4x2dx+2v2x2dx−v2x2dx−vx3dv=0 4x2dx+v2x2dx−vx3dv=0 x2(4+v2)dx−vx3dv=0 x2(4+v2)dxx3(4+v2)−vx3dvx3(4+v2)=0 dxx−vdv4+v2=0 Read more about Problem 03 | Equations with Homogeneous CoefficientsLog in or register to post comments
Problem 02 | Equations with Homogeneous Coefficients Problem 02 (x−2y)dx+(2x+y)dy=0 Solution 02 (x−2y)dx+(2x+y)dy=0 Let y=vx dy=vdx+xdv Substitute, (x−2vx)dx+(2x+vx)(vdx+xdv)=0 xdx−2vxdx+2vxdx+2x2dv+v2xdx+vx2dv=0 xdx+2x2dv+v2xdx+vx2dv=0 (xdx+v2xdx)+(2x2dv+vx2dv)=0 x(1+v2)dx+x2(2+v)dv=0 Read more about Problem 02 | Equations with Homogeneous CoefficientsLog in or register to post comments
Problem 01 | Equations with Homogeneous Coefficients Problem 01 3(3x2+y2)dx−2xydy=0 Solution 01 3(3x2+y2)dx−2xydy=0 Let y=vx dy=vdx+xdv Substitute, 3(3x2+v2x2)dx−2vx2(vdx+xdv)=0 3(3+v2)x2dx−2vx2(vdx+xdv)=0 Divide by x2, 3(3+v2)dx−2v(vdx+xdv)=0 9dx+3v2dx−2v2dx−2vxdv=0 9dx+v2dx−2vxdv=0 (9+v2)dx−2vxdv=0 Read more about Problem 01 | Equations with Homogeneous CoefficientsLog in or register to post comments
Problem 23 | Separation of Variables Problem 23 xcos2ydx+tanydy=0 Read more about Problem 23 | Separation of VariablesLog in or register to post comments