Problem 05 | Substitution Suggested by the Equation

Problem 05
dy/dx=sin(x+y)
 

Solution 05
dy/dx=sin(x+y)

dy=sin(x+y) dx
 

Let
z=x+y

dz=dx+dy

dy=dzdx
 

dzdx=sinz dx

dz=sinz dx+dx

dz=(sinz+1) dx

dzsinz+1=dx

dz1+sinz1sinz1sinz=dx

(1sinz) dz1sin2z=dx

(1sinz) dzcos2z=dx

 dzcos2zsinz dzcos2z=dx

Problem 03 | Substitution Suggested by the Equation

Problem 03
dy/dx=(9x+4y+1)2
 

Solution 03
dy/dx=(9x+4y+1)2

dy=(9x+4y+1)2 dx
 

Let
z=9x+4y+1

dz=9 dx+4 dy

dy=14(dz9 dx)
 

14(dz9 dx)=z2 dx

dz9 dx=4z2 dx

dz=4z2 dx+9 dx

dz=(4z2+9) dx

dz4z2+9=dx

dz(2z)2+32=dx

122dz(2z)2+32=dx

Problem 02 | Substitution Suggested by the Equation

Problem 02
siny(x+siny) dx+2x2cosy dy=0
 

Solution 02
siny(x+siny) dx+2x2cosy dy=0
 

Let
z=siny

dz=cosy dy
 

Hence,
z(x+z) dx+2x2 dz=0       → homogeneous equation
 

Let
z=vx

dz=v dx+x dv
 

vx(x+vx) dx+2x2(v dx+x dv)=0

x2(v+v2) dx+2vx2 dx+2x3 dv=0

Problem 01 | Substitution Suggested by the Equation

Problem 01
(3x2y+1) dx+(3x2y+3) dy=0
 

Solution 01
(3x2y+1) dx+(3x2y+3) dy=0
 

Let
z=3x2y

dz=3 dx2 dy

dy=12(3 dxdz)
 

Thus,
(z+1) dx+(z+3)[12(3 dxdz)]=0

(z+1) dx+32(z+3) dx12(z+3) dz=0

[(z+1)+(32z+92)] dx12(z+3) dz=0

(52z+112) dx12(z+3) dz=0

Problem 06 - 07 | Integrating Factors Found by Inspection

Problem 06
y(y2+1)dx+x(y21)dy=0

Solution 06
y(y2+1)dx+x(y21)dy=0

y3dx+ydx+xy2dyxdy=0

(xy2dy+y3dx)+(ydxxdy)=0

y2(xdy+ydx)+(ydxxdy)=0

(xdy+ydx)+(ydxxdyy2)=0

d(xy)+d(xy)=0

d(xy)+d(xy)=0

xy+xy=c

xy2+x=cy

Problem 04 | Equations with Homogeneous Coefficients

Problem 04
xydx(x2+3y2)dy=0
 

Solution 04
xydx(x2+3y2)dy=0
 

Let
x=vy

dx=vdy+ydv
 

vy2(vdy+ydv)(v2y2+3y2)dy=0

vy2(vdy+ydv)y2(v2+3)dy=0

v(vdy+ydv)(v2+3)dy=0

v2dy+vydvv2dy3dy=0

vydv3dy=0

vdv3dyy=0

vdv3dyy=0

Problem 03 | Equations with Homogeneous Coefficients

Problem 03
2(2x2+y2)dxxydy=0
 

Solution 03
2(2x2+y2)dxxydy=0
 

Let
y=vx

dy=vdx+xdv
 

2(2x2+v2x2)dxvx2(vdx+xdv)=0

4x2dx+2v2x2dxv2x2dxvx3dv=0

4x2dx+v2x2dxvx3dv=0

x2(4+v2)dxvx3dv=0

x2(4+v2)dxx3(4+v2)vx3dvx3(4+v2)=0

dxxvdv4+v2=0

Problem 02 | Equations with Homogeneous Coefficients

Problem 02
(x2y)dx+(2x+y)dy=0
 

Solution 02
(x2y)dx+(2x+y)dy=0
 

Let
y=vx

dy=vdx+xdv
 

Substitute,
(x2vx)dx+(2x+vx)(vdx+xdv)=0

xdx2vxdx+2vxdx+2x2dv+v2xdx+vx2dv=0

xdx+2x2dv+v2xdx+vx2dv=0

(xdx+v2xdx)+(2x2dv+vx2dv)=0

x(1+v2)dx+x2(2+v)dv=0

Problem 01 | Equations with Homogeneous Coefficients

Problem 01
3(3x2+y2)dx2xydy=0
 

Solution 01
3(3x2+y2)dx2xydy=0
 

Let
y=vx

dy=vdx+xdv
 

Substitute,
3(3x2+v2x2)dx2vx2(vdx+xdv)=0

3(3+v2)x2dx2vx2(vdx+xdv)=0
 

Divide by x2,
3(3+v2)dx2v(vdx+xdv)=0

9dx+3v2dx2v2dx2vxdv=0

9dx+v2dx2vxdv=0

(9+v2)dx2vxdv=0