Problem 11
$y(x^2 + y^2 - 1) \, dx + x(x^2 + y^2 + 1) \, dy = 0$
Solution 11
$y(x^2 + y^2 - 1) \, dx + x(x^2 + y^2 + 1) \, dy = 0$
$y(x^2 + y^2) \, dx - y \, dx + x(x^2 + y^2) \, dy + x \, dy = 0$
$[ \, y(x^2 + y^2) \, dx + x(x^2 + y^2) \, dy \, ] - (y \, dx - x \, dy) = 0$
$(x^2 + y^2)(y \, dx + x \, dy) - (y \, dx - x \, dy) = 0$
$(y \, dx + x \, dy) - \dfrac{y \, dx - x \, dy}{x^2 + y^2} = 0$
$d(xy) - d [ \, \arctan (y/x) \, ] = 0$
$\displaystyle \int d(xy) - \int d[ \, \arctan (y/x) \, ] = 0$