$\sqrt{\dfrac{2x + 4}{x - 5}} + 8\sqrt{\dfrac{x - 5}{2x + 4}} = 6$
$\dfrac{\sqrt{2x + 4}}{\sqrt{x - 5}} + \dfrac{8\sqrt{x - 5}}{\sqrt{2x + 4}} = 6$
$\dfrac{\left( \sqrt{2x + 4} \right)^2 + 8 \left( \sqrt{x - 5} \right)^2}{\sqrt{x - 5} \, \sqrt{2x + 4}} = 6$
$\dfrac{(2x + 4) + 8(x - 5)}{\sqrt{x - 5} \, \sqrt{2x + 4}} = 6$
$\dfrac{2x + 4 + 8x - 40}{\sqrt{x - 5} \, \sqrt{2x + 4}} = 6$
$\dfrac{10x - 36}{\sqrt{x - 5} \, \sqrt{2x + 4}} = 6$
$10x - 36 = 6\sqrt{x - 5} \, \sqrt{2x + 4}$
$5x - 18 = 3\sqrt{x - 5} \, \sqrt{2x + 4}$
$(5x - 18)^2 = \left( 3\sqrt{x - 5} \, \sqrt{2x + 4} \right)^2$
$25x^2 - 180x + 324 = 9(x - 5)(2x + 4)$
$25x^2 - 180x + 324 = 9(2x^2 - 6x - 20)$
$25x^2 - 180x + 324 = 18x^2 - 54x - 180$
$7x^2 - 126x + 504 = 0$
$x^2 - 18x + 72 = 0$
$(x - 12)(x - 6) = 0$
$x = 12 \, \text{ and/or } \, 6$
For x = 12
$\sqrt{\dfrac{2x + 4}{x - 5}} + 8\sqrt{\dfrac{x - 5}{2x + 4}} = 6$
$\sqrt{\dfrac{24 + 4}{12 - 5}} + 8\sqrt{\dfrac{12 - 5}{24 + 4}} = 6$
$\sqrt{\dfrac{28}{7}} + 8\sqrt{\dfrac{7}{8}} = 6$ ← okay!
For x = 6
$\sqrt{\dfrac{2x + 4}{x - 5}} + 8\sqrt{\dfrac{x - 5}{2x + 4}} = 6$
$\sqrt{\dfrac{12 + 4}{6 - 5}} + 8\sqrt{\dfrac{6 - 5}{12 + 4}} = 6$
$\sqrt{\dfrac{16}{1}} + 8\sqrt{\dfrac{1}{16}} = 6$ ← okay!
Thus, x = 12 and x = 6 answer