$\dfrac{1}{3x - 2} - \dfrac{8}{\sqrt{3x - 2}} = 9$
Multiply both sides of the equation by 3x - 2
$\dfrac{3x - 2}{3x - 2} - \dfrac{8(3x - 2)}{\sqrt{3x - 2}} = 9(3x - 2)$
$1 - 8\sqrt{3x - 2} = 27x - 18$
$19 - 27x = 8\sqrt{3x - 2}$
Square both sides
$(19 - 27x)^2 = 64(3x - 2)$
$361 - 1026x + 729x^2 = 192x - 128$
$729x^2 - 1218x + 489 = 0$
$243x^2 - 406x + 163 = 0$
By quadratic formula; a = 243, b = -406, and c = 163
$x = \dfrac{-(-406) \pm \sqrt{(-406)^2 - 4(243)(163)}}{2(243)}$
$x = \dfrac{406 \pm 80}{486}$
$x = 1 ~ \text{ and/or } ~ \dfrac{163}{243}$
Check the given equation for x = 1
$\dfrac{1}{3x - 2} - \dfrac{8}{\sqrt{3x - 2}} = 9$
$\dfrac{1}{3 - 2} - \dfrac{8}{\sqrt{3 - 2}} = 9$
$1 - 8 \ne 9$ ← not okay
Check the given equation for x = 163/243
$\dfrac{1}{3x - 2} - \dfrac{8}{\sqrt{3x - 2}} = 9$
$\dfrac{1}{3(\frac{163}{243}) - 2} - \dfrac{8}{\sqrt{3(\frac{163}{243}) - 2}} = 9$
$\dfrac{1}{\frac{1}{81}} - \dfrac{8}{\frac{1}{9}} = 9$
$81 - 72 = 9$ ← okay!
Thus, x = 163/243 answer