Unit weight of wood
$\gamma = 8 \, \dfrac{\text{kN}}{\text{m}^3} \times \dfrac{1000 ~ \text{N}}{1 ~ \text{kN}} \times \left( \dfrac{1 ~ \text{m}}{1000 ~ \text{mm}} \right)^3$
$\gamma = 0.000\,008 ~ \text{N/mm}^3$
$w_o = \dfrac{3000}{400} + 0.000\,008(100d)$
$w_o = 7.5 + 0.0008d ~ \text{N/mm}$
Part 1: Based on allowable bending stress (Fb = 24 MPa)
$M = \dfrac{w_o L^2}{8}$
$M = \dfrac{(7.5 + 0.0008d)(5000^2)}{8}$
$M = 3\,125\,000(7.5 + 0.0008d) ~ \text{N}\cdot\text{mm}$
$F_b = \dfrac{6M}{bd^2}$
$24 = \dfrac{6 [ \, 3\,125\,000(7.5 + 0.0008d) \, ]}{100d^2}$
$d = 245.2 ~ \text{mm}$ answer
Part 2: Based on allowable shear stress (Fv = 1.24 MPa)
$V = R = \dfrac{w_o L}{2}$
$V = \dfrac{(7.5 + 0.0008d)(5000)}{2}$
$V = 2\,500(7.5 + 0.0008d)$
$F_v = \dfrac{3V}{2bd}$
$1.24 = \dfrac{3 \, [ \, 2\,500(7.5 + 0.0008d) \, ]}{2(100d)}$
$d = 232.44 ~ \text{mm}$ answer
Part 3: Based on allowable deflection (δ = L/240)
$\delta = \dfrac{L}{240} = \dfrac{5000}{240}$
$\delta = \dfrac{125}{6} \, \text{mm}$
$\delta = \dfrac{5w_o L^4}{384 EI}$
$\dfrac{125}{6} = \dfrac{5(7.5 + 0.0008d)(5000^4)}{384(18 \, 600) \left( \dfrac{100d^3}{12} \right)}$
$d = 268.9 ~ \text{mm}$ answer