$EI \, t_{A/B} = (Area_{AB}) \, \bar{X}_A$
$EI \, t_{A/B} = \frac{1}{4}(\frac{1}{2}L)(\frac{1}{24}w_oL^2)\frac{4}{5}(\frac{1}{2}L) + \frac{1}{2}(\frac{1}{2}L)(\frac{1}{8}w_oL^2)\frac{2}{3}(\frac{1}{2}L) - \frac{1}{3}(\frac{1}{2}L)(\frac{1}{8}w_oL^2)\frac{3}{4}(\frac{1}{2}L)$
$EI \, t_{A/B} = \frac{1}{480}w_oL^4 + \frac{1}{96}w_oL^4 - \frac{1}{128}w_oL^4$
$EI \, t_{A/B} = \frac{3}{640}w_oL^4$
$t_{A/B} = \dfrac{3w_oL^4}{640EI}$
$\delta_{midspan} = \frac{1}{2}t_{A/B}$
$\delta_{midspan} = \dfrac{1}{2}\left( \dfrac{3w_oL^4}{640EI} \right)$
$\delta_{midspan} = \dfrac{3w_oL^4}{1280EI}$ answer