# Tapered Beam

## New forum topics

- Please help me solve this problem: Moment capacity of a rectangular timber beam
- Solid Mensuration: Prismatoid
- Differential Equation: (1-xy)^-2 dx + [y^2 + x^2 (1-xy)^-2] dy = 0
- Differential Equation: y' = x^3 - 2xy, where y(1)=1 and y' = 2(2x-y) that passes through (0,1)
- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates: Question for Problem #12
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: y=ax³+bx²+cx+d

## nalito po ako s loading pag

nalito po ako s loading pag dating s triangular hindi ko makuha reaction..salamat s sasagot at paki explain.

## (1) Maximum shear = reaction

Neglecting the weight of the beam:

(1) Maximum shear = reaction sa supports, equal ang dalawa. Pero ang maximum shear stress ay mangyayari malapit sa left support dahil nandyan ang pinakamaliit na cross-section.

(2) Maximum moment = sa midspan pa rin, pareho lang kung uniform ang cross-section. Pero di yata sa midspan mangyari ang maximum bending stress dahil meron mas mahina nga na moment pero mas maliit naman ang cross section kung iatras mo sa left of midspan ang pag evaluate. Consider mo distance x from left support, then gawa ka ng relationship between moment and cross-sectional area, that way, makikita mo kung saan mangyayari ang maxim na bending stress by Calculus.

(3) Wala po yatang axial stress na mangyari kasi ang load ay applied laterally sa member.