Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…5 days 17 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…5 days 17 hours ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt415 days 17 hours ago
- Thank you so much5 days 3 hours ago
- How did you get the 2.8 mins…5 days 2 hours ago
- How did you get the distance…5 days 2 hours ago



nalito po ako s loading pag
nalito po ako s loading pag dating s triangular hindi ko makuha reaction..salamat s sasagot at paki explain.
(1) Maximum shear = reaction
Neglecting the weight of the beam:
(1) Maximum shear = reaction sa supports, equal ang dalawa. Pero ang maximum shear stress ay mangyayari malapit sa left support dahil nandyan ang pinakamaliit na cross-section.
(2) Maximum moment = sa midspan pa rin, pareho lang kung uniform ang cross-section. Pero di yata sa midspan mangyari ang maximum bending stress dahil meron mas mahina nga na moment pero mas maliit naman ang cross section kung iatras mo sa left of midspan ang pag evaluate. Consider mo distance x from left support, then gawa ka ng relationship between moment and cross-sectional area, that way, makikita mo kung saan mangyayari ang maxim na bending stress by Calculus.
(3) Wala po yatang axial stress na mangyari kasi ang load ay applied laterally sa member.