Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…4 days 8 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…4 days 8 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt414 days 8 hours ago
- Thank you so much3 days 18 hours ago
- How did you get the 2.8 mins…3 days 17 hours ago
- How did you get the distance…3 days 17 hours ago


Re: Centroid
$dA = \frac{1}{2}r^2 \, d\theta$
$A = \frac{1}{2}{\displaystyle \int_{\theta_1}^{\theta_2}} r^2 \, d\theta$
$A = 2 \left[ \frac{1}{2} {\displaystyle \int_0^{\pi}} a^2(1 + \cos \theta)^2 \, d\theta \right] $
$A = a^2 {\displaystyle \int_0^{\pi}} (1 + \cos \theta)^2 \, d\theta$
$A = a^2 \left( \frac{3}{2}\pi \right)$
$A = \frac{3}{2}\pi a^2$
By symmetry
Solving for XG
$\frac{3}{2}\pi a^2 X_G = {\displaystyle \int_{\theta_1}^{\theta_2}} \frac{2}{3}r \cos \theta \left( \frac{1}{2}r^2 \, d\theta \right)$
$\frac{3}{2}\pi a^2 X_G = \frac{1}{3} {\displaystyle \int_{\theta_1}^{\theta_2}} r^3 \cos \theta \, d\theta$
$\frac{3}{2}\pi a^2 X_G = \frac{1}{3} \left[ {\displaystyle 2 \int_0^{\pi}} a^3 (1 + \cos \theta)^3 \cos \theta \, d\theta \right] $
$\frac{3}{2}\pi a^2 X_G = \frac{2}{3}a^3 {\displaystyle \int_0^{\pi}} (1 + \cos \theta)^3 \cos \theta \, d\theta$
$\frac{3}{2}\pi a^2 X_G = \frac{2}{3}a^3 \left( \dfrac{15\pi}{8} \right)$
$\frac{3}{2}\pi a^2 X_G = \frac{5}{4}\pi a^3$
$X_G = \frac{5}{6}a$
Centroid is at (5a/6, 0) answer
Re: Centroid
In reply to Re: Centroid by Jhun Vert
Thank you sir for the help