Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 month ago
- Sir what if we want to find…1 month ago
- Hello po! Question lang po…1 month 2 weeks ago
- 400000=120[14π(D2−10000)]
(…2 months 3 weeks ago - Use integration by parts for…3 months 3 weeks ago
- need answer3 months 3 weeks ago
- Yes you are absolutely right…3 months 3 weeks ago
- I think what is ask is the…3 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…3 months 3 weeks ago
- Why did you use (1/SQ root 5…3 months 3 weeks ago
Re: Centroid
$dA = \frac{1}{2}r^2 \, d\theta$
$A = \frac{1}{2}{\displaystyle \int_{\theta_1}^{\theta_2}} r^2 \, d\theta$
$A = 2 \left[ \frac{1}{2} {\displaystyle \int_0^{\pi}} a^2(1 + \cos \theta)^2 \, d\theta \right] $
$A = a^2 {\displaystyle \int_0^{\pi}} (1 + \cos \theta)^2 \, d\theta$
$A = a^2 \left( \frac{3}{2}\pi \right)$
$A = \frac{3}{2}\pi a^2$
By symmetry
Solving for XG
$\frac{3}{2}\pi a^2 X_G = {\displaystyle \int_{\theta_1}^{\theta_2}} \frac{2}{3}r \cos \theta \left( \frac{1}{2}r^2 \, d\theta \right)$
$\frac{3}{2}\pi a^2 X_G = \frac{1}{3} {\displaystyle \int_{\theta_1}^{\theta_2}} r^3 \cos \theta \, d\theta$
$\frac{3}{2}\pi a^2 X_G = \frac{1}{3} \left[ {\displaystyle 2 \int_0^{\pi}} a^3 (1 + \cos \theta)^3 \cos \theta \, d\theta \right] $
$\frac{3}{2}\pi a^2 X_G = \frac{2}{3}a^3 {\displaystyle \int_0^{\pi}} (1 + \cos \theta)^3 \cos \theta \, d\theta$
$\frac{3}{2}\pi a^2 X_G = \frac{2}{3}a^3 \left( \dfrac{15\pi}{8} \right)$
$\frac{3}{2}\pi a^2 X_G = \frac{5}{4}\pi a^3$
$X_G = \frac{5}{6}a$
Centroid is at (5a/6, 0) answer
Re: Centroid
In reply to Re: Centroid by Jhun Vert
Thank you sir for the help