Differential Equation: (1-xy)^-2 dx + [y^2 + x^2 (1-xy)^-2] dy = 0
New forum topics
- Please help me solve this problem: Moment capacity of a rectangular timber beam
- Solid Mensuration: Prismatoid
- Differential Equation: (1-xy)^-2 dx + [y^2 + x^2 (1-xy)^-2] dy = 0
- Differential Equation: y' = x^3 - 2xy, where y(1)=1 and y' = 2(2x-y) that passes through (0,1)
- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates: Question for Problem #12
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: y=ax³+bx²+cx+d
This is an exact equation
This is an exact equation
$(1 - xy)^{-2} \, dx + \left[ y^2 + x^2 (1 - xy)^{-2} \right] \, dy = 0$
Check for exactness:
$\dfrac{\partial M}{\partial y} = -2(1 - xy)^{-3}(-x)$
$\dfrac{\partial M}{\partial y} = 2x(1 - xy)^{-3}$
$N = y^2 + x^2 (1 - xy)^{-2}$
$\dfrac{\partial N}{\partial x} = -2x^2(1 - xy)^{-3}(-y) + 2x(1 - xy)^{-2}$
$\dfrac{\partial N}{\partial x} = 2x^2y(1 - xy)^{-3} + 2x(1 - xy)^{-2}$
$\dfrac{\partial N}{\partial x} = 2x(1 - xy)^{-3} \left[ xy + (1 - xy) \right]$
$\dfrac{\partial N}{\partial x} = 2x(1 - xy)^{-3}$
$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$, hence, exact!
To solve this type of equation, see this page: https://mathalino.com/node/494