Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.3 days 21 hours ago
- Sir what if we want to find…3 days 21 hours ago
- Hello po! Question lang po…3 weeks ago
- 400000=120[14π(D2−10000)]
(…1 month 3 weeks ago - Use integration by parts for…2 months 3 weeks ago
- need answer2 months 3 weeks ago
- Yes you are absolutely right…2 months 3 weeks ago
- I think what is ask is the…2 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…2 months 3 weeks ago
- Why did you use (1/SQ root 5…2 months 3 weeks ago
The differentiation you need…
The differentiation you need is direct from the following formulas:
From your equation, $u = 2x$ from which $du = 2$, hence,
$\dfrac{d}{dx} \left[ \tan 2x + \sec 2x \right] = 2 \sec^2 2x + 2 \sec 2x \tan 2x$