Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…4 days 9 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…4 days 9 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt414 days 9 hours ago
- Thank you so much3 days 19 hours ago
- How did you get the 2.8 mins…3 days 18 hours ago
- How did you get the distance…3 days 18 hours ago


To get the volume and
A.) To get the volume and centroid of the solid of revolution generated by the curve $y^2 = 8x$, the x-axis and the latus rectum of $y^2 = 8x$ when its area rotates about the x-axis, the solution look like this:
We need a figure. It looks like this:
Adding some finer details, it looks like this:
The chord that passes through the parabola and perpendicular to the axis is the latus rectum of a parabola and its length is $4a$ if the equation of parabola is $y^2 = 4ax$ as shown below.
The volume of solid of revolution generated by the curve $y^2 = 8x$, the x-axis and the latus rectum of $y^2 = 8x$ when its area rotates about the x-axis can be get by the disk method.
One disk element has the volume $dV$ and its volume is $\pi r^2 dh$, where $dV$ is the volume element, $r$ is the radius and $dh$ is the height element. In this case:
Now getting the volume of the figure above:
For one volume element for the figure above, its volume is: $$dV = \pi r^2 dh$$
If we are going to add many volume elements to create a solid figure, the volume becomes:
$$V = \int \pi r^2 dh$$
In this case, the volume of the solid generated above is:
$$V = \int \pi y^2 dx$$
Now getting its volume:
$$V = \int \pi y^2 dx$$ $$V = \int \pi (8x) dx$$ $$V = \int_0^2 \pi (8x) dx$$ $$\color{green}{V = 16\pi \space cubic \space units}$$
Now getting its centroid; the centroid of the figure above can be seen on the x-axis because of symmetry as shown below:
Because of figure's symmetry, there is only one coordinate where the centroid of the figure lies. In this case, the centroid lies on the x-axis. The formula to get the centroid of the figure is:
$$V\bar x = \int x_c dV$$
Then, in this case, the centroid of the figure above is:
$$16\pi \bar x = \int x dV$$
Then:
$$16\pi \bar x = \int x (\pi y^2 dx)$$ $$16\pi \bar x = \int_0^2 x (\pi (8x) dx)$$ $$16\pi \bar x = \int_0^2 8\pi x^2 dx $$ $$16\pi \bar x = \frac{64}{3} \pi$$ $$\color{green}{\bar x = \frac{4}{3}}$$
B.) To get the volume and centroid of the solid of revolution generated by the curve $y^2 = 8x$, the x-axis and the latus rectum of $y^2 = 8x$ when its area rotates about the y-axis, the solution look like this:
We need a figure. It looks like this:
Adding some finer details, it looks like this:
The chord that passes through the parabola and perpendicular to the axis is the latus rectum of a parabola and its length is $4a$ if the equation of parabola is $y^2 = 4ax$ as shown below.
The volume of solid of revolution generated by the curve $y^2 = 8x$, the x-axis and the latus rectum of $y^2 = 8x$ when its area rotates about the y-axis can be get by the ring method.
To get the volume of the ring, subtract volume of one big ring by volume of one small ring as shown below:
One ring element has the volume $dV$ and its volume is $\pi (r_2^2 - r_1^2) dh$, where $dV$ is the volume element, $r_2$ is the radius of big cylinder, $r_1^2$ is the radius of one small cylinder and $dh$ is the height element. In this particular problem:
Now getting the volume of the figure above:
For one volume element for the figure above, its volume is:
$$dV = \pi (r_2^2 - r_1^2) dh$$
If we are going to add many volume elements to create a soid figure, the volume becomes:
$$V = \int \pi (r_2^2 - r_1^2) dh$$
In this case, the volume of the solid generated above is:
$$V = \int \pi ((2)^2 - (x)^2) dy$$
Now getting its volume:
$$V = \int_0^4 \pi ((2)^2 - (x)^2) dy$$ $$V = \int_0^4 \pi (4 - x^2) dy$$ $$V = \int_0^4 \pi (4 - \left(\frac{y^4}{64}\right)) dy$$ $$\color{green}{V = \frac{64}{5}\pi \space cubic \space units}$$
Now getting its centroid; the centroid of the figure above can be seen on the y-axis because of symmetry as shown below:
Because of figure's symmetry, there is only one coordinate where the centroid of the figure lies. In this case, the centroid lies on the y-axis. The formula to get the centroid of the figure is:
$$V\bar y = \int y_c dV$$
Then, in this case, the centroid of the figure above is:
$$\frac{64}{5}\pi \bar y = \int y dV$$
Then looking at the picture above, its obvious that the centroid of the figure below is $\color{green}{y_c = 0}$
C.) To get the volume and centroid of the solid of revolution generated by the curve $y^2 = 8x$, the x-axis and the latus rectum of $y^2 = 8x$ when its area rotates about the line $x = 2$ (the equation of the latus rectum of the curve $y^2 = 8x$), the solution look like this:
We need a figure. It looks like this:
The volume of solid of revolution generated by the curve $y^2 = 8x$, the x-axis and the latus rectum of $y^2 = 8x$ when its area rotates about the $x = 2$ can be get by the ring method.
To get the volume of the ring, subtract volume of one big ring by volume of one small ring as shown below:
One ring element has the volume $dV$ and its volume is $\pi (r_2^2 - r_1^2) dh$, where $dV$ is the volume element, $r_2$ is the radius of big cylinder, $r_1^2$ is the radius of one small cylinder and $dh$ is the height element. In this particular problem:
Now getting the volume of the figure above:
For one volume element for the figure above, its volume is:
$$dV = \pi (r_2^2 - r_1^2) dh$$
If we are going to add many volume elements to create a soid figure, the volume becomes:
$$V = \int \pi (r_2^2 - r_1^2) dh$$
In this case, the volume of the solid generated above is:
$$V = \int \pi ((2)^2 - (x)^2) dy$$
Now getting its volume:
$$V = \int_-4^4 \pi ((2)^2 - (x)^2) dy$$ $$V = \int_-4^4 \pi (4 - x^2) dy$$ $$V = \int_-4^4 \pi (4 - \left(\frac{y^4}{64}\right)) dy$$ $$\color{green}{V = \frac{128}{5}\pi \space cubic \space units}$$
Now getting its centroid; the centroid of the figure above can be seen on the x-axis because of symmetry as shown below:
Because of figure's symmetry, there is only one coordinate where the centroid of the figure lies. In this case, the centroid lies on the x-axis. The formula to get the centroid of the figure is:
$$V\bar y = \int y_c dV$$
Then, in this case, the centroid of the figure above is:
$$\frac{128}{5}\pi \bar y = \int x dV$$
Then looking at the picture above, its obvious that the centroid of the figure below is $\color{green}{(x,y) = (2,0)}$
Alternate solutions are encouraged.....