Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
Recent comments
- Determine the least depth…2 months 3 weeks ago
- Solve mo ang h manually…3 months ago
- Paano kinuha yung height na…3 months ago
- It's the unit conversion…3 months 2 weeks ago
- Refer to the figure below…3 months 1 week ago
- Yes.7 months ago
- Sir what if we want to find…7 months ago
- Hello po! Question lang po…7 months 3 weeks ago
- 400000=120[14π(D2−10000)]
(…8 months 3 weeks ago - Use integration by parts for…9 months 3 weeks ago
Re: moment of inertia
$I_{\text{at }x = 2} = \Sigma \left[ {\displaystyle \int_{x_1}^{x_2}} (2 - x)^2 \, dA \right]$
$I_{\text{at }x = 2} = {\displaystyle \int_{\sqrt{2}}^{1.634}} (2 - x)^2(x^3 - 2x) \, dx + {\displaystyle \int_{1.634}^2} (2 - x)^2 [ \, (6 - x) - 2x \, ] \, dx$
$I_{\text{at }x = 2} = 0.0351 ~ \text{unit}^4$