Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…4 days 9 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…4 days 9 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt414 days 9 hours ago
- Thank you so much3 days 19 hours ago
- How did you get the 2.8 mins…3 days 18 hours ago
- How did you get the distance…3 days 18 hours ago


Re: FORCE FLUID by Integration
This is a basic problem in Hydraulics
$F_H = \gamma \bar{h} A = 62.4(1)(2 \times 6) = 748.8 ~ \text{lb}$
$F_V = \gamma V = 62.4 \times \frac{1}{2}(2)(2)(6) = 748.8 ~ \text{lb}$
$F = \sqrt{{F_H}^2 + {F_V}^2} = 1058.96 ~ \text{lb}$
Solution by Integration
$dF = \gamma h \, dA = \gamma (y \sin 45^\circ)(6 \, dy)$
$F = 374.4 \sin 45^\circ {\displaystyle \int_0^{2\sqrt{2}}} y \, dy$
$F = 1058.96 ~ \text{lb}$