Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…4 days 4 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…4 days 4 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt414 days 4 hours ago
- Thank you so much3 days 13 hours ago
- How did you get the 2.8 mins…3 days 13 hours ago
- How did you get the distance…3 days 13 hours ago


$y = Ae^{ax} \cos (bx) + Be^
$y = Ae^{ax} \cos (bx) + Be^{ax} \sin (bx)$ ← Equation (1)
$y' = A \Big[ -be^{ax} \sin (bx) + ae^{ax} \cos (bx) \Big] + B \Big[ be^{ax} \cos (bx) + ae^{ax} \sin (bx) \Big]$
$y' = a \Big[ Ae^{ax} \cos (bx) + Be^{ax} \sin (bx) \Big] + bBe^{ax} \cos (bx) - bAe^{ax} \sin (bx)$
$y' = ay + bBe^{ax} \cos (bx) - bAe^{ax} \sin (bx)$ ← Equation (2)
$y'' = ay' + bB \Big[ -be^{ax} \sin (bx) + ae^{ax} \cos (bx) \Big] - bA \Big[ be^{ax} \cos (bx) + ae^{ax} \sin (bx) \Big]$
$y'' = ay' - b^2 \Big[ Ae^{ax} \cos (bx) + Be^{ax} \sin (bx) \Big] + abBe^{ax} \cos (bx) - abAe^{ax} \sin (bx)$
$y'' = ay' - b^2y + abBe^{ax} \cos (bx) - abAe^{ax} \sin (bx)$ ← Equation (3)
Equation (3) - a × Equation (2)
$y'' - ay' = (ay' - b^2y) - a^2y$
$y'' - 2ay' + (a^2 + b^2)y = 0$ answer
Thanks for this, this helps a
In reply to $y = Ae^{ax} \cos (bx) + Be^ by Jhun Vert
Thanks for this, this helps a lot :)