Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 month 2 weeks ago
- Sir what if we want to find…1 month 2 weeks ago
- Hello po! Question lang po…2 months 1 week ago
- 400000=120[14π(D2−10000)]
(…3 months 1 week ago - Use integration by parts for…4 months 1 week ago
- need answer4 months 1 week ago
- Yes you are absolutely right…4 months 1 week ago
- I think what is ask is the…4 months 1 week ago
- $\cos \theta = \dfrac{2}{…4 months 1 week ago
- Why did you use (1/SQ root 5…4 months 1 week ago
$y = Ae^{ax} \cos (bx) + Be^
$y = Ae^{ax} \cos (bx) + Be^{ax} \sin (bx)$ ← Equation (1)
$y' = A \Big[ -be^{ax} \sin (bx) + ae^{ax} \cos (bx) \Big] + B \Big[ be^{ax} \cos (bx) + ae^{ax} \sin (bx) \Big]$
$y' = a \Big[ Ae^{ax} \cos (bx) + Be^{ax} \sin (bx) \Big] + bBe^{ax} \cos (bx) - bAe^{ax} \sin (bx)$
$y' = ay + bBe^{ax} \cos (bx) - bAe^{ax} \sin (bx)$ ← Equation (2)
$y'' = ay' + bB \Big[ -be^{ax} \sin (bx) + ae^{ax} \cos (bx) \Big] - bA \Big[ be^{ax} \cos (bx) + ae^{ax} \sin (bx) \Big]$
$y'' = ay' - b^2 \Big[ Ae^{ax} \cos (bx) + Be^{ax} \sin (bx) \Big] + abBe^{ax} \cos (bx) - abAe^{ax} \sin (bx)$
$y'' = ay' - b^2y + abBe^{ax} \cos (bx) - abAe^{ax} \sin (bx)$ ← Equation (3)
Equation (3) - a × Equation (2)
$y'' - ay' = (ay' - b^2y) - a^2y$
$y'' - 2ay' + (a^2 + b^2)y = 0$ answer
Thanks for this, this helps a
In reply to $y = Ae^{ax} \cos (bx) + Be^ by Jhun Vert
Thanks for this, this helps a lot :)