kindly help me with my homework. eliminate the following arbitrary constants...

y= x^2 + c1 e^3x + c2 e^3x.

August 12, 2017 - 7:07pm

#1
shaaarmiii

Eliminating arbitrary constants

kindly help me with my homework. eliminate the following arbitrary constants...

y= x^2 + c1 e^3x + c2 e^3x.

- 1728 reads

Subscribe to MATHalino on

- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates
- Minima Maxima: y=ax³+bx²+cx+d
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: 9a³y=x(4a-x)³
- Minima maxima: a²y = x⁴
- how to find the distance when calculating moment of force
- strength of materials
- Analytic Geometry Problem Set [Locked: Multiple Questions]
- Equation of circle tangent to two lines and passing through a point
- Product of Areas of Three Dissimilar Right Triangles
- Perimeter of Right Triangle by Tangents
- Differential equations
- Laplace
- Families of Curves: family of circles with center on the line y= -x and passing through the origin
- Family of Plane Curves
- Differential equation
- Differential equation

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

Are you sure that the power of

eis the same for the 2nd and 3rd terms? Both aree^{3x}.In case if you mean y = x^2 + c1 e^2x + c2 e^3x:

$y = x^2 + c_1 e^{2x} + c_2 e^{3x}$ ← Equation (1)

$y' = 2x + 2c_1 e^{2x} + 3c_2 e^{3x}$ ← Equation (2)

$y'' = 2 + 4c_1 e^{2x} + 9c_2 e^{3x}$ ← Equation (3)

Equation (2) - 3 × Equation (1)

$y' - y = (2x - 3x^2) - c_1 e^{2x}$ ← Equation (4)

Equation (3) - 3 × Equation (2)

$y'' - y' = (2 - 6x) - 2c_1 e^{2x}$ ← Equation (5)

Equation (5) - 2 × Equation (4)

$(y'' - y') - 2(y' - y) = (2 - 6x) - 2(2x - 3x^2)$ collect similar terms to get to your final answer.

thank you so much :)