differential equations: y(9x2y)dxx(6xy)dy=0

y(9x2y)dxx(6xy)dy=0

Ley
y = vx
dy = v dx + x dv

vx(9x2vx)dxx(6xvx)(vdx+xdv)=0

vx(9x2vx)dxvx(6xvx)dxx2(6xvx)dv=0

vx(3x2vx)dxx2(6xvx)dv=0

vx2(32v)dxx3(6v)dv=0

x2dxx3(6v)dvv(32v)=0

dxx(6v)dvv(32v)=0

For
6vv(32v)=Av+B32v

6v=A(32v)+Bv
When v = 0, A = 2
When v = 3/2, B = 3

dxx(2v+332v)dv=0

lnx2lnv+32ln(32v)=lnc

lnxlnv2+ln(32v)3/2=lnc

lnx(32v)3/2v2=lnc

x(32v)3/2v2=c

x(32yx)3/2y2x2=c

x3(3x2yx)3/2y2=c

x3[(3x2y)3/2x3/2]y2=c

x3/2(3x2y)3/2y2=c

x3/2(3x2y)3/2=cy2           answer

Corrections:
y(9x2y)dxx(6xy)dy=0

Let
y = vx
dy = v dx + x dv

vx(9x2vx)dxx(6xvx)(vdx+xdv)=0

vx(9x2vx)dxvx(6xvx)dxx2(6xvx)dv=0

vx(3xvx)dxx2(6xvx)dv=0

vx2(3v)dxx3(6v)dv=0

x2dxx3(6v)dvv(3v)=0

dxx(6v)dvv(3v)=0

For
6vv(3v)=Av+B3v

6v=A(3v)+Bv
When v = 0, A = 2
When v = 3, B = 1

dxx(2v+13v)dv=0

lnx2lnv+ln(3v)=lnc

lnxlnv2+ln(3v)=lnc

lnx(3v)v2=lnc

x(3v)v2=c

x(3yx)y2x2=c

x3(3xyx)y2=c

x2(3xy)y2=c

x2(3xy)=cy2           answer