Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
Recent comments
- Determine the least depth…1 day 7 hours ago
- Solve mo ang h manually…1 week 5 days ago
- Paano kinuha yung height na…1 week 5 days ago
- It's the unit conversion…3 weeks 3 days ago
- Refer to the figure below…2 weeks 4 days ago
- Yes.4 months 1 week ago
- Sir what if we want to find…4 months 1 week ago
- Hello po! Question lang po…4 months 4 weeks ago
- 400000=120[14π(D2−10000)]
(…6 months ago - Use integration by parts for…7 months ago
Solution (2)
Solution (2)
$\left[ x \csc \left( \dfrac{y}{x} \right) - y \right] \, dx + x \, dy = 0$
dy = v dx + x dv
$\left[ x \csc \left( \dfrac{vx}{x} \right) - vx \right] \, dx + x(v \, dx + x \, dv) = 0$
$(x \csc v - vx) \, dx + vx \, dx + x^2 \, dv = 0$
$x \csc v \, dx + x^2 \, dv = 0$
$\dfrac{dx}{x} + \dfrac{dv}{\csc v} = 0$
$\dfrac{dx}{x} + \sin v \, dv = 0$
$\ln x - \cos v = c$
$\ln x - \cos \left(\dfrac{y}{x} \right) = c$
thanks po sa solution.. yung
thanks po sa solution.. yung prob. 3 and4. po...solution.