Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 months ago
- Sir what if we want to find…2 months ago
- Hello po! Question lang po…2 months 2 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months 3 weeks ago - Use integration by parts for…4 months 3 weeks ago
- need answer4 months 3 weeks ago
- Yes you are absolutely right…4 months 3 weeks ago
- I think what is ask is the…4 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…4 months 3 weeks ago
- Why did you use (1/SQ root 5…4 months 3 weeks ago
Re: area of the region bounded
Re: area of the region bounded
Re: area of the region bounded
The equation $y = x^2$ is an upward parabola and the $y = \sqrt{x}$ is a rightward parabola. The two has vertex at the origin and they meet at point (1, 1). The required area is dotted region in the figure below:
The area of the rectangular element is y dx, and y is the difference between the top end and bottom end of the strip. In equation,
$dA = y \, dx = (y_U - y_L) \, dx$
You sum (integrate) it up and you're good to go.
Re: area of the region bounded
In reply to Re: area of the region bounded by Jhun Vert
Thank you po..