## Active forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling

## New forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft

## Recent comments

- Hello po! Question lang po…1 week 5 days ago
- 400000=120[14π(D2−10000)]

(…1 month 2 weeks ago - Use integration by parts for…2 months 2 weeks ago
- need answer2 months 2 weeks ago
- Yes you are absolutely right…2 months 2 weeks ago
- I think what is ask is the…2 months 2 weeks ago
- $\cos \theta = \dfrac{2}{…2 months 2 weeks ago
- Why did you use (1/SQ root 5…2 months 2 weeks ago
- How did you get the 300 000pi2 months 2 weeks ago
- It is not necessary to…2 months 2 weeks ago

## For the first question:

For the first question:

This is how to get the equation of the ellipse, given those what you have given:

Visualizing the problem above:

We see that $a^2 = b^2 + c^2$, then $(3)^2 = b^2 + (2)^2,$ then

$b = \sqrt{5}$

Since we know that the center is $C(x,y) = C(0,0),$ we can now get the equation of

the ellipse:

$$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$$ $$\frac{x^2}{(3)^2} +\frac{y^2}{(\sqrt{5})^2} = 1$$ $$\frac{x^2}{9} +\frac{y^2}{5} = 1$$

We can now lable the ellipse that is described by the poster:

Foe the second question......you can answer it easily....Cheers!