Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…4 days 21 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…4 days 21 hours ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt414 days 21 hours ago
- Thank you so much4 days 7 hours ago
- How did you get the 2.8 mins…4 days 6 hours ago
- How did you get the distance…4 days 6 hours ago


For the first question:
For the first question:
This is how to get the equation of the ellipse, given those what you have given:
Visualizing the problem above:
We see that $a^2 = b^2 + c^2$, then $(3)^2 = b^2 + (2)^2,$ then
$b = \sqrt{5}$
Since we know that the center is $C(x,y) = C(0,0),$ we can now get the equation of
the ellipse:
$$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$$ $$\frac{x^2}{(3)^2} +\frac{y^2}{(\sqrt{5})^2} = 1$$ $$\frac{x^2}{9} +\frac{y^2}{5} = 1$$
We can now lable the ellipse that is described by the poster:
Foe the second question......you can answer it easily....Cheers!