Laplace of e^{5t+1}(t sin (t))

# Laplace

## New forum topics

- shear and moment diagram
- Diameter of bolts
- How old is Ann?
- Area of a triangle
- Differential equations: Newton's Law of Coolin
- I need guidance in designing a beam supporting specified ultimate moment of 1100 kN.m (doubly reinforced beam)
- I need guidance in solving the ultimate moment capacity (doubly reinforced beam)
- I need guidance in solving the balance steel area
- Please help me solve this problem using WSD (Working Stress Design) Method
- Physics: Uniform Motion

$\begin{eqnarray}

\mathcal{L} (\sin t) &=& \dfrac{1}{s^2+1}\\

\mathcal{L} (t \sin t) &=& -\left(\dfrac{1}{s^2+1} \right)' = \dfrac{2s}{(s^2+1)^2}\\

\mathcal{L}(te^{5t} \sin t) &=& \dfrac{2(s - 5)}{\left[(s-5)^2 + 1 \right]^2}\\

\mathcal{L}(te^{5t+1} \sin t) &=& \boxed{\dfrac{2e(s-5)}{\left[(s-5)^2+1 \right]^2}}

\end{eqnarray}$