## Active forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling

## New forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft

## Recent comments

- 400000=120[14π(D2−10000)]

(…1 week 6 days ago - Use integration by parts for…1 month 1 week ago
- need answer1 month 1 week ago
- Yes you are absolutely right…1 month 2 weeks ago
- I think what is ask is the…1 month 2 weeks ago
- $\cos \theta = \dfrac{2}{…1 month 2 weeks ago
- Why did you use (1/SQ root 5…1 month 2 weeks ago
- How did you get the 300 000pi1 month 2 weeks ago
- It is not necessary to…1 month 2 weeks ago
- Draw a horizontal time line…1 month 2 weeks ago

## $\dfrac{\sin a}{\sin A} =

$\dfrac{\sin a}{\sin A} = \dfrac{\sin b}{\sin B}$

$a = \checkmark$

With side "a" already known, you may use Napier's analogy or you may use simultaneous equations of cosine law for sides and cosine law for angles.

By Napier's analogy:

$C = \checkmark$

answerBy simultaneous equations

$\cos C = -\cos A ~ \cos B + \sin A ~ \sin B ~ \cos c$

$\cos C - \sin A ~ \sin B ~ \cos c = -\cos A ~ \cos B$

$x - (\sin A ~ \sin B)y = -\cos A ~ \cos B$ ← Equation (1)

Cosine Law for Sides

$\cos c = \cos a ~ \cos b + \sin a ~ \sin b ~ \cos C$

$\sin a ~ \sin b ~ \cos C - \cos c = -\cos a ~ \cos b$

$(\sin a ~ \sin b)x - y = -\cos a ~ \cos b$ ← Equation (2)

Solve for x

$\cos C = x$

$C = \checkmark$

answer## Great from you sir. I can

Great from you sir. I can really learn a lot from here. Mechanical engineering student

## Welcome to MATHalino.com sir

In reply to Great from you sir. I can by Boaz Katatumba

Welcome to MATHalino.com sir Boaz. Enjoy your stay.