Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Solve mo ang h manually…5 days 23 hours ago
- Paano kinuha yung height na…5 days 23 hours ago
- It's the unit conversion…2 weeks 3 days ago
- Refer to the figure below…1 week 4 days ago
- Yes.4 months ago
- Sir what if we want to find…4 months ago
- Hello po! Question lang po…4 months 3 weeks ago
- 400000=120[14π(D2−10000)]
(…5 months 4 weeks ago - Use integration by parts for…6 months 3 weeks ago
- need answer6 months 3 weeks ago
With the headwind or flying
With the headwind or flying against the wind, the net speed of flying is $v_\text{airplane} - v_\text{wind}$. And with the tailwind or flying with the wind, the net speed is $v_\text{airplane} + v_\text{wind}$. From $s = vt$, we will use $t = \dfrac{s}{v}$ to define the total time of 5 hours.
$t_\text{headwind} + t_\text{tailwind} = 5$
$\dfrac{d}{300 - 30} + \dfrac{d}{300 + 30} = 5$
$\dfrac{2d}{927} = 5$
$d = 742.5 \text{ miles}$