Spiral Curve

Spirals are used to overcome the abrupt change in curvature and superelevation that occurs between tangent and circular curve. The spiral curve is used to gradually change the curvature and superelevation of the road, thus called transition curve.
 

003_spiral-curve-transition-curve.png
Back to top

Elements of Spiral Curve

  • TS = Tangent to spiral
  • SC = Spiral to curve
  • CS = Curve to spiral
  • ST = Spiral to tangent
  • LT = Long tangent
  • ST = Short tangent
  • R = Radius of simple curve
  • Ts = Spiral tangent distance
  • Tc = Circular curve tangent
  • L = Length of spiral from TS to any point along the spiral
  • Ls = Length of spiral
  • PI = Point of intersection
  • I = Angle of intersection
  • Ic = Angle of intersection of the simple curve
  • p = Length of throw or the distance from tangent that the circular curve has been offset
  • X = Offset distance (right angle distance) from tangent to any point on the spiral
  • Xc = Offset distance (right angle distance) from tangent to SC
  • Y = Distance along tangent to any point on the spiral
  • Yc = Distance along tangent from TS to point at right angle to SC
  • Es = External distance of the simple curve
  • θ = Spiral angle from tangent to any point on the spiral
  • θs = Spiral angle from tangent to SC
  • i = Deflection angle from TS to any point on the spiral, it is proportional to the square of its distance
  • is = Deflection angle from TS to SC
  • D = Degree of spiral curve at any point
  • Dc = Degree of simple curve

 

003-magnified-spiral-curve.gif

 

Back to top

Formulas for Spiral Curves

Distance along tangent to any point on the spiral:
Y=LL540R2Ls2
 

At L = Ls, Y = Yc, thus,
Yc=LsLs340R2
 

Offset distance from tangent to any point on the spiral:
X=L36RLs
 

At L = Ls, X = Xc, thus,
Xc=Ls26R
 

Length of throw:
p=14Xc=Ls224R
 

Spiral angle from tangent to any point on the spiral (in radian):
θ=L22RLs
 

At L = Ls, θ = θs, thus,
θs=Ls2R
 

Deflection angle from TS to any point on the spiral:
i=13θ=L26RLs
 

At L = Ls, i = is, thus,
i=13θs=Ls6R
 

This angle is proportional to the square of its distance
iis=L2Ls2
 

Tangent distance:
Ts=Ls2+(R+P)tanI2
 

Angle of intersection of simple curve:
Ic=I2θs
 

External distance:
Es=R+PcosI2R
 

Degree of spiral curve:
DDC=LLs
 

Back to top