∫(6z−1)dz√(2z+1)3
=∫(6z−1)dz[(2z+1)1/2]3
Let
u=(2z+1)1/2
u2=2z+1
z=12(u2−1)
dz=udu
∫(6z−1)dz√(2z+1)3
=∫[6⋅12(u2−1)−1](udu)u3
=∫(3u2−4)duu2
=∫(3−4u2)du
=∫(3−4u−2)du
=3u+4u−1+C
=u−1(3u2+4)+C
=3u2+4u+C
Revert to the original variable of integration
∫(6z−1)dz√(2z+1)3
=3(2z+1)+4(2z+1)1/2+C
=6z+7√2z+1+C ← answer