Problem Evaluate $\displaystyle \int_0^1 \dfrac{x \, dx}{x^2 + 2}$.
Problem Evaluate $\displaystyle \int_0^9 \dfrac{1}{\sqrt{1 + \sqrt{x}}}$
Problem What is the perimeter of the curve r = 4(1 + sin θ)?
The answer is 32 units. For detailed solution, follow the link by clicking on the figure.
Problem Integrate $\displaystyle \int \dfrac{dx}{\sqrt[7]{x^2}}$.
Problem Evaluate $\displaystyle \int \sqrt{ax + b} ~ dx$.
Problem Evaluate $\displaystyle \int \left( \sqrt{x} + x\sqrt{x} + \dfrac{1}{\sqrt{x}} \right) \, dx$
Evaluate the following:
Example 4: $\displaystyle \int \sqrt{x^3 + 2} \,\, x^2 \, dx$
Example 5: $\displaystyle \int \dfrac{(3x^2 + 1) \, dx}{\root 3\of {(2x^3 + 2x + 1)^2}}$
Example 6: $\displaystyle \int (1 - 2x^2)^3 \, dx$
Evaluate the following integrals:
Example 1: $\displaystyle \int \dfrac{2x^3+5x^2-4}{x^2}dx$
Example 2: $\displaystyle \int (x^4 - 5x^2 - 6x)^4 (4x^3 - 10x - 6) \, dx$
Example 3: $\displaystyle \int (1 + y)y^{1/2} \, dy$
Follow @iMATHalino
MATHalino