Evaluate the integral of (x dx) / (x^2 + 2) with lower limit of 0 and upper limit of 1 Date of Exam November 2000 Subject Mathematics, Surveying and Transportation Engineering Problem Evaluate ∫10xdxx2+2. A. 0.2027 C. 0.2270 B. 0.2207 D. 0.2072 Answer Key Click here to show or hide the answer key [ A ] Solution Click here to expand or collapse this section ∫10xdxx2+2=12∫102xdxx2+2 Use the logarithmic function formula ∫duu=lnu+C Hence, ∫10xdxx2+2=12[ln(x2+2)]10=12[ln(12+2)−ln(02+2)]=12[ln3−ln2]=12ln(32)=ln(32)1/2=ln√32=0.2027⟵ answer Category Integral Calculus Definite Integral Integration limits of integration Logarithmic Function Log in or register to post comments