## Evaluate the integral of (x dx) / (x^2 + 2) with lower limit of 0 and upper limit of 1

**Problem**

Evaluate $\displaystyle \int_0^1 \dfrac{x \, dx}{x^2 + 2}$.

A. 0.2027 | C. 0.2270 |

B. 0.2207 | D. 0.2072 |

**Problem**

Evaluate $\displaystyle \int_0^1 \dfrac{x \, dx}{x^2 + 2}$.

A. 0.2027 | C. 0.2270 |

B. 0.2207 | D. 0.2072 |

**Problem**

Find the equation of the curve passing through the point (3, 2) and having s slope 5*x*^{2} - *x* + 1 at every point (*x*, *y*).

A. $y = \frac{5}{3}x^3 - \frac{1}{2}x^2 + x - \frac{31}{3}$ | C. $y = 5x^3 - 2x^2 + x - 118$ |

B. $y = 5x^3 - 2x^2 + x - 31$ | D. $y = \frac{5}{3}x^3 - \frac{1}{2}x^2 + x - \frac{83}{2}$ |

**Problem**

Given the position function *x*(*t*) = *t*^{4} - 8*t*^{2}, find the distance that the particle travels at *t* = 0 to *t* = 4.

A. 160 | C. 140 |

B. 150 | D. 130 |

**Problem**

Evaluate $\displaystyle \int_0^9 \dfrac{1}{\sqrt{1 + \sqrt{x}}}$

A. 4.667 | C. 5.333 |

B. 3.227 | D. 6.333 |

- Read more about Find the Integral of dx / sqrt(1 + sqrt(x))
- Log in or register to post comments