[MODE] → 8:VECTOR → 1:VctA → 1:3
VctA = [ 4 5 -3 ]
[AC] → [SHIFT] → [5:VECTOR] → 2:Data → 2:VctB → 1:3
VctB = [ -6 4 -5 ]
[AC] → [SHIFT] → [5:VECTOR] → 2:Data → 3:VctC → 1:3
VctC = [ 4 -2 -3 ]
Resultant R
R = 200(VctA ÷ Abs(VctA)) + 400(VctB ÷ Abs(VctB)) + 300(VctC ÷ Abs(VctC))
[AC] → 200 → [ ( ] → [SHIFT] → [5:VECTOR] → 3:VctA → [ ÷] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 3:VctA → [ ) ] → [ ) ] → [ + ] → 400 → [ ( ] → [SHIFT] → [5:VECTOR] → 4:VctB → [ ÷] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 4:VctB → [ ) ] → [ ) ] → [ + ] → 300 → [ ( ] → [SHIFT] → [5:VECTOR] → 5:VctC → [ ÷] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 5:VctC → [ ) ] → [ ) ]
R = [ 62.46 212.32 -479.91 ] answer
For the magnitude of the resultant:
[AC] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 6:VctAns → [ ) ].
R = Abs(VctAns) = 528.48 lb answer
For the direction cosines:
[AC] → [SHIFT] → [5:VECTOR] → 6:VctAns → [ ) ] → ÷ → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 6:VctAns → [ ) ].
λ = VctAns ÷ Abs(VctAns)
λ = [ 0.1182 0.4018 -0.9081 ] answer