[MODE] → 8:VECTOR → 1:VctA → 1:3
VctA = [ 2 3 4 ]
[AC] → [SHIFT] → [5:VECTOR] → 2:Data → 2:VctB → 1:3
VctB = [ -3 -4 5 ]
[AC] → [SHIFT] → [5:VECTOR] → 2:Data → 3:VctC → 1:3
VctC = [ 0 0 4 ]
Resultant R
R = 100(VctA ÷ Abs(VctA)) + 300(VctB ÷ Abs(VctB)) + 200(VctC ÷ Abs(VctC))
[AC] → 100 → [ ( ] → [SHIFT] → [5:VECTOR] → 3:VctA → [ ÷] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 3:VctA → [ ) ] → [ ) ] → [ + ] → 300 → [ ( ] → [SHIFT] → [5:VECTOR] → 4:VctB → [ ÷] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 4:VctB → [ ) ] → [ ) ] → [ + ] → 200 → [ ( ] → [SHIFT] → [5:VECTOR] → 5:VctC → [ ÷] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 5:VctC → [ ) ] → [ ) ]
R = [ -90.14 -114 486.41 ] answer
For the magnitude of the resultant:
[AC] → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 6:VctAns → [ ) ].
R = Abs(VctAns) = 507.66 lb answer
For the direction cosines:
[AC] → [SHIFT] → [5:VECTOR] → 6:VctAns → [ ) ] → ÷ → [SHIFT] → [hyp:Abs] → [SHIFT] → [5:VECTOR] → 6:VctAns → [ ) ].
λ = VctAns ÷ Abs(VctAns)
λ = [ -0.1776 -0.2246 0.9581 ] answer