$\Sigma M_{R2} = 0$
$12R_1 = 8P $
$R_1 = \frac{2}{3}P$
$\Sigma M_{R1} = 0$
$12R_2 = 4P$
$R_2 = \frac{1}{3} P$
$M_{max} = 4(\frac{2}{3}P) = \frac{8}{3}P \, \text{ lb}\cdot\text{ft}$
Based on allowable shearing force of beam
$f_v = \dfrac{VQ_{NA}}{Ib}$
Where:
V = 2/3 P
QNA = 6(1)(4.5) + 2 [ 5(1)(2.5) ] = 52 in3
I = 8(103)/12 - 6(83)/12 = 410.67 in4
b = 2 in
fv = 120 psi
Thus,
$120 = \dfrac{\frac{2}{3}P(52)}{410.67(2)}$
$P = 2843.1 \, \text{ lb}$
Based on allowable shearing force of the screws
$s = \dfrac{RI}{VQ_{screw}}$
Where:
R = 2(300) = 600 lb
V = 2/3 P
Qscrew = 6(1)(4.5) = 27 in3
I = 410.67 in4
s = 5 in
Thus,
$5 = \dfrac{600(410.67)}{\frac{2}{3}P(27)}$
$P = 2737.8 \, \text{ lb}$
For safe value of P, use P = 2737.8 lb. answer
Bending stress:
$f_b = \dfrac{Mc}{I} = \dfrac{\frac{8}{3}(2737.8)(12)(5)}{410.67}$
$f_b = 1066.67 \, \text{ psi}$ answer