Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…5 days 12 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…5 days 12 hours ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt415 days 12 hours ago
- Thank you so much4 days 22 hours ago
- How did you get the 2.8 mins…4 days 21 hours ago
- How did you get the distance…4 days 21 hours ago



Re: plane trigonometry
Prove the identity
$\dfrac{2\sin x - 2\cos x}{\tan x - \cot x} = \dfrac{\sin 2x}{\sin x + \cos x}$
$\dfrac{2(\sin x - \cos x)}{\dfrac{\sin x}{\cos x} - \dfrac{\cos x}{\sin x}} = \dfrac{\sin 2x}{\sin x + \cos x}$
$\dfrac{2(\sin x - \cos x)}{\dfrac{\sin^2 x- \cos^2 x}{\sin x \, \cos x}} = \dfrac{\sin 2x}{\sin x + \cos x}$
$\dfrac{2(\sin x - \cos x)\sin x \, \cos x}{\sin^2 x- \cos^2 x} = \dfrac{\sin 2x}{\sin x + \cos x}$
$\dfrac{2(\sin x - \cos x)\sin x \, \cos x}{(\sin x - \cos x)(\sin x + \cos x)} = \dfrac{\sin 2x}{\sin x + \cos x}$
$\dfrac{2\sin x \, \cos x}{\sin x + \cos x} = \dfrac{\sin 2x}{\sin x + \cos x}$
$\dfrac{\sin 2x}{\sin x + \cos x} = \dfrac{\sin 2x}{\sin x + \cos x}$
Re: plane trigonometry
In reply to Re: plane trigonometry by Jhun Vert
thank you sir.may i ask u another math problem? in right triangle , C= 90 degree, B= 60 degree, A= 30degree how will you find the length of the hypotenuse (c)? thanks sir
Re: plane trigonometry
since the given triangle is a right triangle, that is, C=90 degrees... the sum of A + B = C... denotes it... hypotenuse can be solve, one of the legs, either side "a" (opposite to angle A) or side "b" (opposite to angle B) must be known... proceed solving hypotenuse "h" (opposite to angle C=90 deg)... and use either cosine or sine function.
Re: plane trigonometry
better for you to solve it first... and show us your solution... that's the time we will help you...
Re: plane trigonometry
In reply to Re: plane trigonometry by Orion1213
h= opposite side over 90 degree ( but the length of the opposite side is not given) that's my dilemma sir,either of the side is not given...
Re: plane trigonometry
In reply to Re: plane trigonometry by james perez
how to get then the length of the opposite side and adjacent f only the length of angle A,B,C were given?