Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.4 weeks 1 day ago
- Sir what if we want to find…4 weeks 1 day ago
- Hello po! Question lang po…1 month 2 weeks ago
- 400000=120[14π(D2−10000)]
(…2 months 3 weeks ago - Use integration by parts for…3 months 2 weeks ago
- need answer3 months 2 weeks ago
- Yes you are absolutely right…3 months 3 weeks ago
- I think what is ask is the…3 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…3 months 3 weeks ago
- Why did you use (1/SQ root 5…3 months 3 weeks ago
Because it is not stated in
Because it is not stated in the problem, let us assume that the 48 kips is an axial load.
Solution
Inner radius, $r = 12.6 ~ \text{inches}$
Outer radius, $R = 12.6 + 0.5 = 13.1 ~ \text{inches}$
Calculate the cross-sectional area of the tube:
$A = \pi (R^2 - r^2)$
Calculate the normal stress.
$\sigma = \dfrac{P}{A}$ where $P = 48^k$
Your answer will be in the unit ksi (kilopound per square inch).