Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 week 2 days ago
- Sir what if we want to find…1 week 2 days ago
- Hello po! Question lang po…3 weeks 6 days ago
- 400000=120[14π(D2−10000)]
(…2 months ago - Use integration by parts for…2 months 4 weeks ago
- need answer2 months 4 weeks ago
- Yes you are absolutely right…3 months ago
- I think what is ask is the…3 months ago
- $\cos \theta = \dfrac{2}{…3 months ago
- Why did you use (1/SQ root 5…3 months ago
Re: Continues beam
Compute reactions and maximum moment
Re: Continues beam
no one can solve?
Re: Continues beam
$M_1L_1 + 2M_2(L_1 + L_2) + M_3L_2 + \dfrac{6A_1\bar{a}_1}{L_1} + \dfrac{6A_2\bar{b}_2}{L_2} = 0$
$L_1 = 5 ~ \text{m}$
$L_2 = 5.89 + 6.71 = 12.6 ~ \text{m}$
$\dfrac{6A_1\bar{a}_1}{L_1} = \dfrac{w_oL^3}{4} = \dfrac{36.84(5^3)}{4}$
$\dfrac{6A_1\bar{a}_1}{L_1} = 1151.25 ~ \text{kN}\cdot\text{m}^2$
$\dfrac{6A_2\bar{b}_2}{L_2} = \dfrac{w_oL^3}{4} + \dfrac{Pb}{L}(L^2 - b^2) = \dfrac{53(12.6^3)}{4} + \dfrac{484(6.71)}{12.6}(12.6^2 - 6.71^2)$
$\dfrac{6A_2\bar{b}_2}{L_2} = 55,820.32 ~ \text{kN}\cdot\text{m}^2$
Thus,
$0 + 2M_2(5 + 12.6) + 0 + 1151.25 + 55,820.32 = 0$
$M_2 = -1618.51 ~ \text{kN}\cdot\text{m}$
First Span
${R_1}' = {R_2}' = \dfrac{1618.51}{5} = 323.702 ~ \text{kN}$
Second Span
$V_3 = \frac{1}{2}(53)(12.6) + \dfrac{484(5.89)}{12.6} = 560.15 ~ \text{kN}$
${R_2}' = {R_3}' = \dfrac{1618.51}{12.6} = 128.453 ~ \text{kN}$
Reactions
$R_1 = 92.1 - 323.702 = -231.602 ~ \text{kN}$
$R_2 = 92.1 + 323.702 + 591.65 + 128.453 = 1135.905 ~ \text{kN}$
$R_3 = 560.15 - 128.453 = 431.697 ~ \text{kN}$
Maximum moment will occur at the point of application of concentrated load
$M_{max} = 431.697(6.71) - 53(6.71)\left( \dfrac{6.71}{2} \right)$
$M_{max} = 1703.55 ~ \text{ kN}\cdot\text{m}$